

Getting Started with
Google Guava

Write better, more efficient Java, and have fun doing so!

Bill Bejeck

BIRMINGHAM - MUMBAI

Getting Started with Google Guava

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1080813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-015-5

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Bill Bejeck

Reviewers
John Drum

David Sletten

Acquisition Editor
Usha Iyer

Commissioning Editor
Poonam Jain

Technical Editors
Nitee Shetty

Aniruddha Vanage

Copy Editors
Gladson Monterio

Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Esha Thakker

Proofreader
Mario Cecere

Indexer
Monica Ajmera Mehta

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Bill Bejeck is a senior software engineer with 10 years experience across a wide
range of projects. Currently he is working on the storage and analysis of financial
data using Hadoop. He has a B.A in Economics from the University of Maryland
and an M.S in Information Systems from Johns Hopkins University. Bill also enjoys
blogging at http://codingjunkie.net.

I would like to thank my wife Beth for her support, encouragement,
and patience, making my work on this book possible (not to mention
making life easy for me overall!), and my children Allison, Emily,
and Brady for their unconditional love and support, and the joy they
bring to my life every day.

About the Reviewers

John Drum is a bicoastal software engineer with over 20 years of experience
in industries ranging from e-commerce to financial services.

David Sletten is a software engineer at Near Infinity in Northern Virginia.
He probably would have learned quite a few things from the author if Bill had
not left the company.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Getting Started 5

Introducing Google Guava 5
The case for using Guava 6
What is this book about? 6
Installing Guava 7
Using Guava with Maven or Gradle 7

Getting the source code for the book 8
Summary 10

Chapter 2: Basic Guava Utilities 11
Using the Joiner class 12

Time for a review 14
Using the Splitter class 14

Time for a review 16
Working with strings in Guava 16

Using the Charsets class 17
Using the Strings class 18

Using the CharMatcher class 19
Using the Preconditions class 20
Object utilities 22

Getting help with the toString method 22
Checking for null values 23
Generating hash codes 23
Implementing CompareTo 24

Summary 25

Table of Contents

[ii]

Chapter 3: Functional Programming with Guava 27
Using the Function interface 28

Guidelines for using the Function interface 29
Using the Functions class 29

Using the Functions.forMap method 30
Using the Functions.compose method 30

Using the Predicate interface 32
An example of the Predicate interface 32

Using the Predicates class 33
Using the Predicates.and method 33
Using the Predicates.or method 34
Using the Predicates.not method 34
Using the Predicates.compose method 34

Using the Supplier interface 35
An example of the Supplier interface 35

Using the Suppliers class 36
Using the Suppliers.memoize method 37
Using the Suppliers.memoizeWithExpiration method 37

Summary 38
Chapter 4: Working with Collections 39

The FluentIterable class 40
Using the FluentIterable.filter method 40
Using the FluentIterable.transform method 41

Lists 42
Using the Lists.partition method 42

Sets 42
Using the Sets.difference method 43
Using the Sets.symmetricDifference method 43
Using the Sets.intersection method 43
Using the Sets.union method 44

Maps 44
Using the Maps.uniqueIndex method 45
Using the Maps.asMap method 45
Transforming maps 46

Multimaps 46
ArrayListMultimap 46
HashMultimap 48

BiMap 49
Using the BiMap.forcePut method 49
Using the BiMap.inverse method 50

Table of Contents

[iii]

Table 50
Table operations 51
Table views 52

Range 52
Ranges with arbitrary comparable objects 53

Immutable collections 54
Creating immutable collection instances 54

Ordering 55
Creating an Ordering instance 55
Reverse sorting 55
Accounting for null 56
Secondary sorting 56
Retrieving minimum and maximum values 57

Summary 58
Chapter 5: Concurrency 59

Synchronizing threads 60
Monitor 61

Monitor explained 62
Monitor best practice 62
Different Monitor access methods 62

ListenableFuture 63
Obtaining a ListenableFuture interface 64

FutureCallback 65
Using the FutureCallback 65

SettableFuture 66
AsyncFunction 67
FutureFallback 68
Futures 69

Asynchronous Transforms 69
Applying FutureFallbacks 69

RateLimiter 70
Summary 71

Chapter 6: Guava Cache 73
MapMaker 74
Guava caches 74

Cache 74
LoadingCache 76

Loading values 76
Refreshing values in the cache 76

CacheBuilder 77
CacheBuilderSpec 79

Table of Contents

[iv]

CacheLoader 81
CacheStats 81
RemovalListener 82

RemovalNotification 82
RemovalListeners 83

Summary 84
Chapter 7: The EventBus Class 85

EventBus 86
Creating an EventBus instance 86
Subscribing to events 86
Posting the events 87
Defining handler methods 87
Concurrency 87

Subscribe – An example 87
Event Publishing – An example 89
Finer-grained subscribing 90
Unsubscribing to events 93
AsyncEventBus 94

Creating an AsyncEventBus instance 94
DeadEvents 94
Dependency injection 95
Summary 96

Chapter 8: Working with Files 97
Copying a file 98
Moving/renaming a File 98
Working with files as strings 98
Hashing a file 100
Writing to files 101

Writing and appending 101
InputSupplier and OutputSupplier 102

Sources and Sinks 102
ByteSource 103
ByteSink 103
Copying from a ByteSource class to a ByteSink class 104
ByteStreams and CharStreams 104

Limiting the size of InputStreams 105
Joining CharStreams 105

Closer 107
BaseEncoding 108
Summary 109

Table of Contents

[v]

Chapter 9: Odds and Ends 111
Creating proper hash functions 111

Checksum hash functions 112
General hash functions 112
Cryptographic hash functions 113

BloomFilter 113
BloomFilter in a nutshell 113
Funnels and PrimitiveSinks 114
Creating a BloomFilter instance 114

Optional 116
Creating an Optional instance 117

Throwables 118
Getting the chain of Throwables 118
Obtaining the Root Cause Throwable 119

Summary 120
Index 121

Preface
Java continues to maintain its popularity, and is one of the main languages used
in the software industry today. One of the strengths of Java is the rich ecosystem
of libraries available for developers, helping them to be more productive. Guava
is a great example of such a library that will give Java developers a boost in their
productivity. In addition, as we start to use Guava, we'll get ideas that we can
start implementing in our own code.

What this book covers
Chapter 1, Getting Started introduces Guava, and in addition to that, makes
the case for using Guava.

Chapter 2, Basic Guava Utilities covers basic functionality for working with
strings and objects.

Chapter 3, Functional Programming with Guava introduces the functional
programming idioms provided by Guava.

Chapter 4, Working with Collections covers the collection utilities and classes
that enhance the existing Java collections.

Chapter 5, Concurrency shows how using Guava's concurrency abstractions
help us to write better concurrent code.

Chapter 6, Guava Cache introduces Guava caching, including a self-loading cache.

Chapter 7, The EventBus Class covers how we can use the Guava EventBus class
for event-based programming.

Preface

[2]

Chapter 8, Working with Files shows how Guava greatly simplifies reading and
writing of files, especially for those using Java 6.

Chapter 9, Odds and Ends wraps up our coverage of Guava including the Optional
class for avoiding nulls, Guava hashing functionality, and the BloomFilter
data structure.

What you need for this book
You will need to have Java 1.6 or greater installed. Additionally, you will need
to have Maven or Gradle installed to pull in the dependencies required to work
with the available sample code.

Who this book is for
This book is for Java developers; there is no minimum level of experience required.
There is something for everyone who works with Java, from the beginner to the
expert programmer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The Function interface gives us the ability
to incorporate functional programming into Java and greatly simplify our code."

A block of code is set as follows:

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>14.0</version>
 </dependency>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

dependencies {
 compile group: 'com.google.guava' name: 'guava' version:
'14.0'
 }

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started
In this chapter, we are going to cover a little bit on Guava's history. Then, we are going
to make a case on why you should use a well-established library instead of "rolling
your own". We are going to talk about where you can get the Guava library and how
to install it and finally, how to set up the source code that comes with this book.

Introducing Google Guava
What is Google Guava? Starting out originally in 2007 as the "Google Collections
Library", which provided utilities for working with Java collections, the Google
Guava project has evolved into being an essential toolkit for developers working in
Java. There is something for everyone in Guava. There are classes for working with
strings, collections, concurrency, I/O, and reflection. The Function interface gives
us the ability to incorporate functional programming into Java and greatly simplify
our code. The Supplier interface helps with creational patterns. But Guava is more
than just abstractions that take some of the boilerplate out of Java, or convenience
methods that we all feel should have been in Java to begin with. It's about writing a
good code and making it more resilient and concise. So my suggestion is to not just
use Guava, but look at the source code and get a feel of how things are done. Then
try to apply the same principles you've learned to your own code. Finally, have fun!

Getting Started

[6]

The case for using Guava
As software developers, we like to think we can do it all. We instinctively want to
write our own libraries for handling things we see on a day-to-day basis. Of course,
we think the code we've written is bullet proof, and we know why we've written unit
tests, and they all pass! Well, I have some bad news for you, we all are not as smart
as we'd like to be. Actually, it's really not about how smart you are. It's more about
writing code that's not only unit tested, but is also being used by a large group of
developers and having their input weigh in on the code. Guava is used by hundreds
of production applications, and as of July 2012, there were a staggering 286,000
individual unit tests in the guava-tests package. So when it comes down to it,
you are far better off using a library such as Guava, than rolling your own. Besides,
according to Larry Wall (the author of Perl), one of the best qualities of a software
engineer is laziness, not in the "I don't want to work" way but in the "Why reinvent
the wheel when this works so well" way. Really good developers will look for an
established library to help with a problem before starting to write their own.

What is this book about?
Our goal for the book is that it will always sit next to your computer while you
are coding. When you come across a situation where you need to know how to
use something from Guava, or what Guava has that could solve your problem,
our hope is that this book will have the answer, and if not, at least point you in the
right direction. This book will have source code for every topic covered. Most of
the time, the source code will be in the form of unit tests. Sometimes, coming up
with meaningful examples can be difficult, and a unit test will quickly show how
the code is supposed to work. Also, having unit tests will be invaluable as Guava
tends to have a frequent release schedule, and running the tests will give you a
quick indication if anything has changed from the previous release. While it will be
impossible to cover every part of the Guava library, we've tried to make the book
comprehensive and cover most of what we think a typical developer will find useful.
Finally, we hope that the book will be as easy to read and enjoyable as it is useful.

Chapter 1

[7]

Installing Guava
To start working with Guava, all you need to have is Java 1.6 or a higher version
installed. The version of Guava covered in this book is 14, which is the latest as of this
writing. The following are the steps you need to perform to get started with Guava:

1. Guava can be downloaded directly by navigating to https://code.google.
com/p/guava-libraries/ and clicking on the guava-14.jar link.

2. If you are working with GWT and would like to take advantage of Guava in
your code, there is also a GWT compatible version that can be downloaded
by clicking on the guava-gwt-14.jar link on the same page. A separate
version for GWT is required because everything in the standard Guava
distribution will not be compiled to JavaScript by the GWT compiler.

3. Once the JAR file is downloaded, add it as an external library to your IDE
(IntelliJ, NetBeans, or Eclipse). If you are working with a text editor (Sublime
Text 2 or TextMate), add the JAR file to your classpath.

4. The API docs for Guava can be found at http://docs.guava-libraries.
googlecode.com/git-history/release/javadoc/index.html.

You are now ready to start working with Guava.

Using Guava with Maven or Gradle
It's possible to use Guava with build tools such as Maven or Gradle.

To use Guava in your Maven projects, add the following to the dependencies section
of your pom.xml file:

 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>14.0</version>
 </dependency>

Getting Started

[8]

If you are using Gradle, first add the Maven Central Repository (if you haven't
already) by adding the following to your build.gradle file:

 repositories {
 mavenCentral()
 }

Then, add the following highlighted section to the dependencies section of the
build.gradle file:

 dependencies {
 compile group: 'com.google.guava' name: 'guava' version: '14.0'
 }

For more information on Maven, go to http://maven.apache.org/, and for more
information on Gradle, go to http://www.gradle.org/.

It's important to mention that Guava has only one dependency, JSR-305.

JSR-305 is a specification for defining annotations that can be used
by tools for detecting defects in Java programs. More information
is available at http://jcp.org/en/jsr/detail?id=305.

If you are not planning on using the JSR-305 JAR directly, you don't need to
include it with your dependencies. But if you are going to use JSR-305, you
will need to explicitly define that dependency, as it is not going to be pulled in
automatically. Also, if you plan to use Guava from within Scala, you will have to
include the JSR-305 JAR file. While the Java compiler does not require the library
containing the annotations when compiling, the Scala compiler currently does.
While this may change in the future, for now, if you want to use Guava with
Scala, you will need to have the JSR-305 JAR file in your classpath as well.

Getting the source code for the book
The source code for the book is structured as a Java project, with a structure
consistent with that of either a Gradle or Maven project. As mentioned earlier,
most of the source code will be in the form of unit tests. If you don't have either
Gradle or Maven installed, I strongly recommend that you install one of them,
as it makes running the unit tests easy and will pull down Guava and all the
dependencies for the project.

Chapter 1

[9]

The following are the steps for obtaining and working with the source code from
the book:

1. Download the source code from http://www.packtpub.com/support.
2. Extract the zipped source file to a location on your computer.
3. Change the directory to guava-book-code directory.
4. If you have Gradle installed, run gradle install.
5. If you have Maven installed, run mvn install.

After following these steps, you will have Guava installed as well as the
dependencies needed for the source code from the book. If all went well, you
should have seen a bunch of unit tests being executed and they should have all
passed. I strongly recommend using either of the build tools previously mentioned,
with the source code. This will make it very easy to change the versions of Guava
as it evolves and runs the tests for the book's source code and see if anything has
changed. If you don't have either of the build tools installed, you will need to
download the following dependencies to run all the examples listed in the book:

• Lucene v4.2: http://lucene.apache.org/
• Spring Java config Version 3.2: http://www.springsource.org/spring-

framework

• H2 (embedded database) v1.3.170: http://www.h2database.com/html/
main.html

• JUnit v4.11: https://github.com/junit-team/junit/wiki/Download-
and-Install

The source code for the book was written on a MacBook Pro v10.7.5, using Java 7,
the Gradle build system, and the IntelliJ IDE.

Downloading the example code
You can download the example code files for all Packt books
that you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Getting Started

[10]

Summary
So far we've gone over a brief history of Guava, and how it can improve the quality
of your code as well as make your job a little easier, if not more fun. We also saw the
importance of using well-tested and widely used libraries instead of rolling your
own. Finally, we went over where to get Guava from, how to install it, and how
to get the source code for the book. In the next chapter, we begin our exploration
of Google Guava by covering the basic utility classes found in the com.google.
common.base package along with the ComparisonChain class from the the com.
google.common.collect package.

Basic Guava Utilities
In the previous chapter, we talked about what Guava is and how to install it.
In this chapter we will start using Guava. We are going to demonstrate the
basic functionalities provided by Guava and how it can help with some of
the common everyday tasks encountered in programming.

In this chapter we will be covering:

• The use of the Joiner class to concatenate strings together with a specified
delimiter. We will also cover the MapJoiner class that performs the same
operation on the key value pairs of a map.

• The use of the Splitter class, which is the logical inverse of the Joiner
class. Given a string and a delimiter, the Splitter class will produce
substrings broken out by the provided delimiter.

• Working with strings; specifically, how to perform common operations
such as removing parts of a string, matching strings, and more using the
CharMatcher and Strings classes.

• The Preconditions class, which provides methods for asserting certain
conditions you expect variables, arguments, or methods to adhere to.

• Some basic utilities for working with any Java object, including help with
the toString and hashCode methods and an easier way of implementing
the Comparable interface.

Basic Guava Utilities

[12]

Using the Joiner class
Taking arbitrary strings and concatenating them together with some delimiter token
is something that most programmers deal with on a regular basis. It usually involves
taking an array, list, or an iterable and looping over the contents, appending each
item to a StringBuilder class, and appending the delimiter afterwards. This tends
to be a cumbersome process and will typically look as follows:

public String buildString(List<String> stringList, String delimiter){
 StringBuilder builder = new StringBuilder();
 for (String s : stringList) {
 if(s !=null){
 builder.append(s).append(delimiter);
 }
 }
 builder.setLength(builder.length() – delimiter.length());
 return builder.toString();
 }

Note the need to remove the last delimiter that was appended to the very end
of the string. Not very complicated, but it's still some boilerplate code that can
be more easily handled by using the Joiner class. Here's the same example from
earlier (assuming the use of "|" as the delimiter character), but using a Joiner class:

Joiner.on("|").skipNulls().join(stringList);

This is much more concise and there's no chance of making an error in formatting the
string. If you wanted to add a replacement for null values instead, you would
use the following:

Joiner.on("|").useForNull("no value").join(stringList);

There are a few points we need to emphasize here about using the Joiner class.
The Joiner class is not restricted to working only with strings. One could pass in
an array, iterable, or varargs of any object. The result is built by calling Object.
toString() for each element that was passed in. As a consequence, if the skipNulls
or useForNull method is not used, a NullPointerException error will be thrown.
Once created, a Joiner class is immutable, and therefore thread-safe, and can be
used as a static final variable. With that in mind, consider the following code snippet:

 Joiner stringJoiner = Joiner.on("|").skipNulls();
 //the useForNull() method returns a new instance
 of the Joiner!
 stringJoiner.useForNull("missing");
 stringJoiner.join("foo","bar",null);

Chapter 2

[13]

In the preceding code example, the useForNull() method call will have no effect on
the original Joiner class and null values will still be omitted from the result string.

The Joiner class not only returns strings but also has methods that can work with
the StringBuilder class:

 StringBuilder stringBuilder = new StringBuilder();
 Joiner joiner = Joiner.on("|").skipNulls();
 //returns the StringBuilder instance with the values foo,bar,baz
 appeneded with "|" delimiters
 joiner.appendTo(stringBuilder,"foo","bar","baz")

In the preceding example, we are passing a StringBuilder instance to the Joiner
class and the StringBuilder object is returned.

The Joiner class can be used with classes that implement the Appendable interface.

 FileWriter fileWriter = new FileWriter(new File("path")):
 List<Date> dateList = getDates();
 Joiner joiner = Joiner.on("#").useForNulls(" ");
 //returns the FileWriter instance with the values
 appended into it
 joiner.appendTo(fileWriter,dateList);

Here we see a similar example. We are passing in a FileWriter instance and a list of
Date objects to the Joiner class. The Joiner class will append the joined list of dates
to the FileWriter instance and then return the FileWriter instance.

As we can see, Joiner is a very useful class that makes a common task very easy to
deal with. There is a special method to cover before we move on—the MapJoiner
method. The MapJoiner method works in the same way as the Joiner class but it
joins the given strings as key value pairs with a specified delimiter. A MapJoiner
method is created as follows:

 mapJoiner = Joiner.on("#").withKeyValueSeparator("=");

Let's quickly review what is going on here:

• The Joiner.on("#") call is creating a Joiner object
• The Joiner object is created in the call to the on method and calls the

withKeyValueSeparator method, which takes the calling Joiner instance
to construct a MapJoiner object that is returned by the method call

Basic Guava Utilities

[14]

Here is a unit test demonstrating the use of the MapJoiner method (my apologies for
the obvious American Football reference, NFC East Division to be specific):

@Test
 public void testMapJoiner() {
 //Using LinkedHashMap so that the original
 order is preserved
 String expectedString = "Washington D.C=Redskins#New York
 City=Giants#Philadelphia=Eagles#Dallas=Cowboys";
 Map<String,String> testMap = Maps.newLinkedHashMap();
 testMap.put("Washington D.C","Redskins");
 testMap.put("New York City","Giants");
 testMap.put("Philadelphia","Eagles");
 testMap.put("Dallas","Cowboys");
 String returnedString = Joiner.on("#").
 withKeyValueSeparator("=").join(testMap);
 assertThat(returnedString,is(expectedString));
 }

Time for a review
The preceding unit test is creating a LinkedHashMap instance with string
keys and values. It's worth noting that we are using the static factory method
newLinkedHashMap(), which is found in the Maps class in the com.google.common.
collect package. Then, the Joiner class is used to create a string by joining the key
value pairs together. Finally, we assert that the string returned by the Joiner operation
matches the expected string value. Also note the use of the Hamcrest matcher method,
is(), that is bundled with JUnit.

Using the Splitter class
Another common task for programmers is to take a string with some delimiter
character and split that string on the delimiter and obtain an array of the parts
of the string. If you need to read in text files, you do this all the time. But the
behavior of the String.split method leaves something to be desired, as
evidenced by the following example:

 String testString = "Monday,Tuesday,,Thursday,Friday,,";
 //parts is [Monday, Tuesday, , Thursday,Friday]
 String[] parts = testString.split(",");

Chapter 2

[15]

As you can see, the String.split method truncated the last two entries in the
concatenated string. In some cases, that might be the behavior you want, but that is
something that should be left to the programmer and should not happen by default.
The Splitter class helps with this situation. The Splitter class performs the
inverse of the functions of the Joiner class. A Splitter class can split on a single
character, a fixed string, a java.util.regex.Pattern package, a string representing
a regular expression, or a CharMatcher class (another Guava class, which will
be covered in this chapter as well). A Splitter instance is created by calling the
on method and specifying the separator to be used. Once you have the Splitter
instance, you will call the split method, which returns an iterable object containing
the individual string parts from the source.

 Splitter.on('|').split("foo|bar|baz");

 Splitter splitter = Splitter.on("\\d+");

In the preceding examples, we see a Splitter instance using a '|' character
and another Splitter instance using a regular expression pattern that would
split on one or more consecutive digits embedded in a string.

The Splitter class also has an option for dealing with any leading or trailing
whitespace in the trimResults method.

 //Splits on '|' and removes any leading or trailing whitespace
 Splitter splitter = Splitter.on('|').trimResults();

Just like the Joiner class, Splitter is immutable on creation, so care must be
taken to not call the trimResults method after creating the original Splitter
class; for example:

 Splitter splitter = Splitter.on('|');
 //Next call returns a new instance, does not
 modify the original!
 splitter.trimResults();
 //Result would still contain empty elements
 Iterable<String> parts = splitter.split("1|2|3|||");

The Splitter class, like Joiner with its accompanying MapJoiner class, has a
MapSplitter class. The MapSplitter class can take a string in which the keys and
values are delimited with one value and the key value pair is delimited with another
value and returns a Map instance with the entries in the same order as the given
string. Constructing a MapSplitter class is done as follows:

//MapSplitter is defined as an inner class of Splitter
Splitter.MapSplitter mapSplitter = Splitter.on("#").
withKeyValueSeparator("=");

Basic Guava Utilities

[16]

As we can see, the MapSplitter class is created in the same way as the MapJoiner
class. First we specify the base Splitter object to use and then specify the
delimiter that the MapSplitter class is to use to separate out the key value pairs.
The following is an example of the MapSplitter class, which is the inverse of our
example of the MapJoiner class:

@Test
 public void testSplitter() {
 String startString = "Washington D.C=Redskins#New York
 City=Giants#Philadelphia=Eagles#Dallas=Cowboys";
 Map<String,String> testMap = Maps.newLinkedHashMap();
 testMap.put("Washington D.C","Redskins");
 testMap.put("New York City","Giants");
 testMap.put("Philadelphia","Eagles");
 testMap.put("Dallas","Cowboys");
 Splitter.MapSplitter mapSplitter =
 Splitter.on("#").withKeyValueSeparator("=");
 Map<String,String> splitMap =
 mapSplitter.split(startSring);
 assertThat(testMap,is(splitMap));
 }

Time for a review
The preceding unit test takes a string and uses the MapSplitter class to create
a LinkedHashMap instance. Then we assert that the Map instance created by the
MapSplitter class matches our expectations.

This wraps up our coverage of Joiners and Splitters, two classes that should
be in every Java developer's toolbox.

Working with strings in Guava
Regardless of the language you prefer to use, all programmers work with strings and
it can sometimes be tedious and error prone. At some point, we all need to read data
from a file or database table and reformat the data, either for presentation to users or
for storing in a format that suits our requirements. Fortunately, Guava provides us
with some very useful classes that can make working with strings much easier.
These classes are:

• CharMatcher

• Charsets

• Strings

Chapter 2

[17]

Now let's take a look at how we can use these in our code.

In the first example, the unit test that we are demonstrating uses the Ascii class
method for determining if a character is in lower case. The second example is a
demonstration of converting a string from lowercase to uppercase.

Using the Charsets class
In Java, there are six standard character sets that are supported on every Java
platform. This is relevant because it's not uncommon to have the need to run
the following code:

 byte[] bytes = someString.getBytes();

But there is a problem with the preceding statement. By not specifying the
character set that you want the bytes returned in, you will get the default of the
system running the code, which could lead to problems if the default character
set on the system is not the one you are expecting to deal with. It's considered
best practice to obtain the underlying bytes of a string in the following manner:

 try{
 bytes = "foobarbaz".getBytes("UTF-8");
 }catch (UnsupportedEncodingException e){
 //This really can't happen UTF-8 must be supported
 }

But there are still two problems with this example:

• UTF-8 must be supported on the Java platform, so in reality the
UnsupportedEncodingException error will never be thrown

• Since we are using a string to specify the character set definition, we could
make a spelling mistake, which would cause an exception to be thrown

This is where the Charsets class helps. The Charsets class provides static final
references to the six character sets supported on the Java platform. Using the
Charsets class, we can transform the earlier example to the following:

 byte[] bytes2 = "foobarbaz".getBytes(Charsets.UTF_8);

It's worth noting that as of Java 7, there is a StandardCharsets class that also
provides static final definitions to the six standard character sets supported
on the Java platform. Now let's move on to the Strings class.

Basic Guava Utilities

[18]

Using the Strings class
The Strings class provides a few handy utility methods for working with strings.
Have you ever had to write something like the following?

 StringBuilder builder = new StringBuilder("foo");
 char c = 'x';
 for(int i=0; i<3; i++){
 builder.append(c);
 }
 return builder.toString();

The previous example, which spans 6 lines of code, can now be replaced with
one line.

 Strings.padEnd("foo",6,'x');

What's important to note here is that the second argument, 6, specifies the minimum
length of the returned string and not how many times to append the x character to
the original string. If the provided string already had a length of 6 or greater, no
padding would occur. There is also a corresponding padStart method with the
same signature and behavior with the exception that the character is inserted in
front of the given string until the minimum length is met.

There are three very useful methods in the Strings class that are meant specifically
for dealing with possible null values:

• nullToEmpty: This method takes a string as an argument and returns the
original string if the value is not null or has a length greater than 0, otherwise
it returns """"

• emptyToNull: This method performs in a manner similar to nullToEmpty,
but will return a null value if the string parameter is null or is an empty
string

• isNullOrEmpty: This method performs a null and length check on the string
argument and returns true if the string is in fact null or empty (length of 0)

It would probably be a good idea to always use the nullToEmpty method on any
string objects passed as arguments.

Chapter 2

[19]

Using the CharMatcher class
The CharMatcher class provides functionality for working with characters based on
the presence or absence of a type of character or a range of characters. The methods
in the CharMatcher class make formatting and working with text very simple. For
example, here's how you take a string that spans multiple lines and format it to be on
one line with a space where the line break was previously present:

CharMatcher.BREAKING_WHITESPACE.replaceFrom(stringWithLinebreaks,' ');

There is also a version of replaceFrom that takes a CharSequence value as the
replacement value instead of a single character.

To remove multiple tabs and spaces (multiple meaning consecutive) and collapse
them into single spaces, use the following code:

 @Test
 public void testRemoveWhiteSpace(){
 String tabsAndSpaces = "String with spaces and
 tabs";
 String expected = "String with spaces and tabs";
 String scrubbed = CharMatcher.WHITESPACE.
 collapseFrom(tabsAndSpaces,' ');
 assertThat(scrubbed,is(expected));
 }

In the preceding test, we are taking a string with multiple spaces and tabs
and replacing all of them with a single space, all in one line of code.

The previous example works in some cases, but what if the string in question
had spaces at the beginning that we also wanted to remove? The returned
string will have a space in the front, but that is easily handled by using the
trimAndCollapseFrom method:

@Test
 public void testTrimRemoveWhiteSpace(){
 String tabsAndSpaces = " String with spaces and
 tabs";
 String expected = "String with spaces and tabs";
 String scrubbed = CharMatcher.WHITESPACE.
 trimAndCollapseFrom(tabsAndSpaces,' ');
 assertThat(scrubbed,is(expected));
 }

Basic Guava Utilities

[20]

In this test, we are again taking a string with leading spaces as well as multiple
spaces and tabs and removing the leading spaces and collapsing the multiple
consecutive spaces into one space each, again in one line!

While listing all of the methods available in the CharMatcher class would be
impractical, here is an example where instead of replacing a group of matching
characters, we retain the characters that match:

 @Test
 public void testRetainFrom(){
 String lettersAndNumbers = ""foo989yxbar234"";
 String expected = ""989234"";
 String retained = CharMatcher.JAVA_DIGIT.
 retainFrom(lettersAndNumbers);
 assertThat(expected,is(retained));
 }

In this example, we are taking the string ""foo989yxbar234"" and retaining all
digits found in the string.

Before moving on, we should talk about one final powerful feature of the
CharMatcher class: the ability to combine CharMatcher classes to create a new
CharMatcher class. For example let's say you want to create a matcher for numbers
or whitespace:

CharMatcher cm = CharMatcher.JAVA_DIGIT.or(CharMatcher.WHITESPACE);

This will now match any number (as defined by the definition of a digit in Java)
or a whitespace character.

The CharMatcher class is powerful and is very useful when it comes to working
with strings in Java.

Using the Preconditions class
The Preconditions class is a collection of static methods used to verify the
state of our code. Preconditions are very important because they guarantee
our expectations for successful code execution are met. If the conditions are
different from what we expect, we get instant feedback about where the problem
is. As before, using preconditions are important for ensuring the behavior of our
code and are very useful in debugging.

Chapter 2

[21]

You can certainly write your own preconditions, like so:

 if(someObj == null){
 throw new IllegalArgumentException(" someObj must
 not be null");
 }

By using preconditions (with static imports), our check for a null parameter
is more concise.

 checkNotNull(someObj,"someObj must not be null");

Next, we are going to show the usage of preconditions with a highly
contrived example:

public class PreconditionExample {
 private String label;
 private int[] values = new int[5];
 private int currentIndex;

 public PreconditionExample(String label) {
 //returns value of object if not null
 this.label = checkNotNull(label,"Label can''t be null");
 }

 public void updateCurrentIndexValue(int index, int valueToSet) {
 //Check index valid first
 this.currentIndex = checkElementIndex(index, values.length,
"Index out of bounds for values");
 //Validate valueToSet
 checkArgument(valueToSet <= 100,"Value can't be more than
100");
 values[this.currentIndex] = valueToSet;
 }

 public void doOperation(){
 checkState(validateObjectState(),"Can't perform operation");
 }

 private boolean validateObjectState(){
 return this.label.equalsIgnoreCase("open") && values[this.
currentIndex]==10;
 }

}

Basic Guava Utilities

[22]

The following is a summary of the four methods from the previous example:

• checkNotNull (T object, Object message): This method returns the object
if it is not null; otherwise a NullPointerException error is thrown.

• checkElementIndex (int index, int size, Object message): In this
method, the value of the index variable is the position of the element you
are trying to access and the value of the size variable is the length of the
array, list, or string. The index variable is retuned if valid; otherwise an
IndexOutOfBoundsException error is thrown.

• checkArgument (Boolean expression, Object message): This method
evaluates a Boolean expression involving the state of a variable passed
to a method. The Boolean expression is expected to evaluate to true,
otherwise an IllegalArgumentException error is thrown.

• checkState (Boolean expression, Object message): This method evaluates
a Boolean expression involving the state of the object, not the arguments.
Again, the Boolean expression is expected to evaluate to true, otherwise
an IllegalArgumentException error is thrown.

Object utilities
In this section we are going to cover the utility methods that help with checking
for null values and assist in creating toString and hashCode methods. We are
then going to take a look at a helpful class that takes the pain out of implementing
the Comparable interface.

Getting help with the toString method
While the toString method is essential when it comes to debugging, writing one
is tedious. However, the Objects class makes use of the toStringHelper method,
which makes this task much easier. Consider the following simple class and take a
look at the toString() method that follows:

 public class Book implements Comparable<Book> {

 private Person author;
 private String title;
 private String publisher;
 private String isbn;
 private double price;
....

Chapter 2

[23]

 public String toString() {
 return Objects.toStringHelper(this)
 .omitNullValues()
 .add("title", title)
 .add("author", author)
 .add("publisher", publisher)
 .add("price",price)
 .add("isbn", isbn).toString();
 }

Let's explore what's going on in the toString method:

• First we are passing a reference of the Book class in the call that creates
an instance of Objects.ToStringHelper

• The second method call, omitNullValues, will exclude any null property
values from being added

• Each call to add provides a label and the property to include in the string
representation of the Book object.

Checking for null values
The firstNonNull method takes two arguments and returns the argument
that is not null.

 String value = Objects.firstNonNull(someString,""default value"");

The firstNonNull method can be used as a way of providing a default value when
you are not sure if an object is null. A word of caution though: if both arguments are
null, a NullPointerException error will be thrown.

Generating hash codes
Writing the hashCode method for an object is essential, but tedious. The Objects
class makes use of the hashCode method, which can make this process easier.
Consider a Book class having four fields: title, author, publisher, and isbn.
The following code shows how you can use the Object.hashCode method:

public int hashCode() {
 return Objects.hashCode(title, author, publisher, isbn);
}

Basic Guava Utilities

[24]

Implementing CompareTo
Again, using our Book class, the following is a typical implementation of
the compareTo method:

public int compareTo(Book o) {
 int result = this.title.compareTo(o.getTitle());
 if (result != 0) {
 return result;
 }

 result = this.author.compareTo(o.getAuthor());
 if (result != 0) {
 return result;
 }

 result = this.publisher.compareTo(o.getPublisher());
 if(result !=0) {
 return result;
 }

 return this.isbn.compareTo(o.getIsbn());
 }

Now let's take a look at the implementation of compareTo using the
ComparisonChain class:

public int compareTo(Book o) {
 return ComparisonChain.start()
 .compare(this.title, o.getTitle())
 .compare(this.author, o.getAuthor())
 .compare(this.publisher, o.getPublisher())
 .compare(this.isbn, o.getIsbn())
 .compare(this.price, o.getPrice())
 .result();
 }

The second example is much more compact and is also easier to read. Also,
the ComparisonChain class will stop making comparisons with the first non-zero
result, the only way a zero will be returned is if all comparisons result in a zero.

Chapter 2

[25]

Summary
We have covered a lot of ground in this chapter. We learned how Guava makes life
easier when working with delimited strings using Joiner, Splitter, and the very
useful MapJoiner and MapSplitter classes. We also learned about Guava's ability
to work with strings using the Charsets, CharMatcher, and Strings classes.

We saw how to make our code more robust and improve debugging with the use
of the Preconditions class. In the Objects class, we learned about some useful
methods to help with setting default values and creating toString and hashCode
methods. We also saw how to use the ComparisonChain class to make implementing
the compareTo method easier.

In the next chapter, we take a look at how we can use Guava to leverage some
functional programming in our code, by using the Function and Predicate
interface that, when used sparingly, can add power and clarity to our programs.

Functional Programming
with Guava

In this chapter, we start to notice that using Guava has an impact on how we write
our code and makes development easier. We will take a look at how using certain
Guava interfaces and classes can help us, by applying well-established patterns to
make our code more maintainable as well as robust.

Specifically, we will be covering the following topics in this chapter:

• The Function interface: This explains how we can introduce functional
programming to our Java programs. It also explains how best we can use
the Function interface and recognize where its usage is not appropriate

• The Functions class: This class is a collection of static methods that are
used to work with implementations of the Function interface

• The Predicate interface: This is an interface that evaluates a given object
for certain criteria and returns true if the object has met the criteria

• The Predicates class: This is a companion class to the Predicate
interface that has static utility methods for working with implementations
of the Predicate interface

• The Supplier interface: This is an interface used to supply an object of
a given type. We will see how to use the Supplier interface to implement
a variety of patterns to create objects

• The Suppliers class: This is a class that provides some default
implementations of the Supplier interface

Functional Programming with Guava

[28]

Using the Function interface
Functional programming emphasizes the use of functions to achieve its objectives
versus changing state. This is in contrast with imperative programming that typically
relies on the changing state and is the approach that is familiar with most of the
developers. The Function interface from Guava gives us the ability to introduce
some functional programming into our Java code.

The Function interface contains only two methods:

public interface Function<F,T> {
 T apply(F input);
 boolean equals(Object object);
}

We won't go into much detail on the equals method other than to say that if Object
A equals Object B, the result of calling apply on A should equal the result of calling
apply on B. The apply method simply takes an input object and returns an output
object. A good Function implementation should have no side effects, meaning the
object passed as an argument should remain unchanged after the apply method has
been called. Here's an example that takes an instance of a java.util.Date object
and returns a formatted string representing the date:

public class DateFormatFunction implements Function<Date,String> {

@Override
public String apply(Date input) {
 SimpleDateFormat dateFormat = new SimpleDateFormat("dd/mm/yyyy");
 return dateFormat.format(input);
 }
}

In this first example, we can clearly see that a java.util.Date object is being
transformed using a SimpleDateFormat class to give us a string representation of
the date in our desired format. While this example is probably overly simplistic, it
demonstrates the purpose of the Function interface, transforming an object while
hiding the implementation details. Although in this example we are using a class
that implements the Function interface, we could have easily defined Function
inline as an anonymous class. Consider the following example:

Function<Date,String> function = new Function<Date, String>() {
 @Override
 public String apply(Date input) {
 return new
SimpleDateFormat("dd/mm/yyyy").format(input);
 }
 };

Chapter 3

[29]

There is no difference between the previous two examples; one is simply a class
that implements the Function interface and the other is an anonymous class.
One advantage to having a class implement the Function interface is that you
could use dependency injection to pass a Function interface into a collaborating
class and increase your code's cohesion.

Guidelines for using the Function interface
This is probably a good time to discuss introducing the Function interface into your
code and for anonymous class usage. With Java in its current state, we don't have
closures as they exist in other languages. While the release of Java 8 will change this,
for now Java's answer to closures is to use anonymous classes. While an anonymous
class functions effectively in the same way as a closure, the syntax can be bulky
and when used too much, can make your code harder to follow and maintain. As a
matter of fact, when we analyze the previous example, while it serves its purpose
for demonstrating how Functions works, we don't gain much from using it. For
example, consider the more typical, imperative approach to achieving the same goal:

public String formatDate(Date input) {
 return new SimpleDateFormat("dd/mm/yyyy").format(input);
 }

Now compare the previous example of the anonymous class implementing
the Function interface. This final example is much easier to read. When to use
Function comes down to where you need to perform your transformations. If
you have a class with a Date instance field and a method that returns the Date
instance in an expected String format, you are probably better off implementing
that method as demonstrated in the latter example. However, if you have a collection
of Date objects and need to obtain a list containing the string representations of those
dates, the Function interface could be a better approach. The main point here is that
you shouldn't start throwing anonymous Function instances throughout your code
simply because you can. Take a look at your code; have you really gained from using
a functional approach? We will see several examples of using the Function interface
when we cover Guava Collections in Chapter 4, Working with Collections, and caches in
Chapter 6, Guava Cache.

Using the Functions class
The Functions class contains a handful of useful methods for working with
Function instances. In this section, we will cover how two of these useful
methods can help make the Function interface even more productive.

Functional Programming with Guava

[30]

Using the Functions.forMap method
The forMap method takes Map<K,V> and returns a function (Function<K,V>)
whose apply method will perform a map lookup. For example, consider the
following class representing a state in the United States:

public class State {

 private String name;
 private String code;
 private Set<City> mainCities = new HashSet<City>();

 }

Now consider that you have a map named stateMap in the form of
Map<String,State> where the string key would be the state abbreviation.
Now to create the function that would perform the lookup by state code,
you would simply do the following:

Function<String,State> lookup = Functions.forMap(stateMap);
//Would return State object for NewYork
lookup.apply("NY");

There is one caveat to using the Functions.forMap method. The map returned
by Functions.forMap will throw an IllegalArgumentException exception if the
given key is not found in the map. However, there is another version of Functions.
forMap that takes an additional parameter to be used as a default value, should the
given key not be found in the map. By using a Function interface to perform the
state lookups, you can easily change out the implementation. When combining it
with a Splitter object to create a map or when using some of the other methods for
map creation in the Guava collection package, we are leveraging the power of Guava
in our code.

Using the Functions.compose method
Now assume you have another class representing a city, which is shown as follows:

public class City {

 private String name;
 private String zipCode;
 private int population;

Chapter 3

[31]

 public String toString() {
 return name;
 }
}

Consider the following scenario: you would like to create a Function instance that,
given a State object, would be transformed into comma-separated String of the
major cities in that state. The Function object would look as follows:

public class StateToCityString implements Function<State,String> {

 @Override
 public String apply(State input) {
 return Joiner.on(",").join(input.getMainCities());
 }
}

Now let's take this a step further. You would like to have a single Function instance
that takes the abbreviation for a state and returns comma-separated String of the
top cities for that state. Guava provides a great solution to this situation. It's the
Functions.compose method that takes two Function instances as arguments and
returns a single Function instance that is a composition of the two. So we can take
an example of our previous two Function instances and perform the following:

 Function<String,State> lookup = Functions.forMap(stateMap);
 Function<State, String> stateFunction = new StateToCityString();
 Function<String,String> composed =
Functions.compose(stateFunction ,lookup);

Now a call to composed.apply("NY") would return the following:

"Albany,Buffalo,NewYorkCity"

Let's take a minute to walk through the order of method calls here. composed
Function takes the NY parameter and calls lookup.apply(). The return value
from the lookup.apply() method is used as a parameter to stateFunction.
apply(). Finally, the result of the stateFunction.apply() method is returned
to the caller. Without the use of our composed function, the previous example
would look as follows:

String cities = stateFunction.apply(lookup.apply("NY"));

Functional Programming with Guava

[32]

Using the Predicate interface
The Predicate interface is a functional cousin to the Function interface.
Like the Function interface, the Predicate interface has two methods.
Here's the interface's definition:

public interface Predicate<T> {
 boolean apply(T input)
 boolean equals(Object object)
}

As was the case with the Function interface, we won't be going into detail about
the equals method here either. The apply method returns the result of applying
Predicate to the input. Where the Function interface is used to transform objects,
the Predicate interface is used to filter objects. The usage guidelines for Predicates
are the same as the guidelines for Functions; don't use Predicates when a simpler
procedural approach will suffice. Also, a Predicate function should not have any
side effects. In the next chapter, where we cover Collections, we will see how to
make the best use of the Predicate interface.

An example of the Predicate interface
Here is a simple example of a Predicate interface that will use the City class
from the recent example. Here we will define a Predicate to determine if a
city has minimum population:

public class PopulationPredicate implements Predicate<City> {

 @Override
 public boolean apply(City input) {
 return input.getPopulation() <= 500000;
 }
}

In this example, we are simply checking the population field for the City object and
returning true if the population is less than or equal to 500000. Typically, you would
see a Predicate interface such as this defined as an anonymous class and used as
a filter condition for placing elements in a collection. Since the Predicate interface
is so similar to the Function interface, much of what we stated for the Function
interface applies to the Predicate interface too.

Chapter 3

[33]

Using the Predicates class
The Predicates class is a collection of useful methods for working with Predicate
instances. The Predicates class offers some very helpful methods that should be
expected from working with Boolean conditions, chaining Predicate instances with
"and" or "or" conditions, and providing a "not" that evaluates to true if the given
Predicate instance evaluates to false and vice versa. There is also a Predicates.
compose method, but it takes a Predicate instance and a Function object and
returns Predicate that evaluates the output from the given Function object. Let's
take a look at some examples so we can get a better understanding of how we can
use Predicates in our code. Before we move on to look at specific examples, let's
assume we have the following two instances of Predicates classes defined (in
addition to PopulationPredicate defined previously) for our City object:

public class TemperateClimatePredicate implements Predicate<City> {

 @Override
 public boolean apply(City input) {
 return input.getClimate().equals(Climate.TEMPERATE);
 }
}

public class LowRainfallPredicate implements Predicate<City> {

 @Override
 public boolean apply(City input) {
 return input.getAverageRainfall() < 45.7;
 }
}

It bears repeating, while not required, that we typically would define Predicate
instances as anonymous classes, but for clarity we will be using concrete classes.

Using the Predicates.and method
The Predicates.and method takes multiple Predicate instances and returns a single
Predicate instance that will return true if all the component Predicate instances
evaluate to true (consistent with the logical AND operator). If any of the component
Predicate instances return false, the evaluation of any other Predicate instances is
stopped. For example, let's say we wanted to only accept cities with a population of
under 500,000 and having average rainfall of less than 45.7 inches per year:

Predicate smallAndDry =
Predicates.and(smallPopulationPredicate,lowRainFallPredicate);

Functional Programming with Guava

[34]

There is also an option to call Predicates.and with the following signatures:

Predicates.and(Iterable<Predicate<T>> predicates);
Predicates.and(Predicate<T> ...predicates);

Using the Predicates.or method
The Predicates.or method takes multiple Predicates and returns a single
Predicate instance that returns true if any of the component Predicate instances
evaluate to true (consistent with the logical OR operator). Once a component
Predicate instance returns true, no further evaluations are made. For this example,
let's assume we want to include cities with a population of less than or equal to 500,000
or having a temperate climate:

Predicate smallTemperate =
Predicates.or(smallPopulationPredicate,temperateClimatePredicate);

Predicates.or has the same overloaded method signatures like the
Predicates.and method:

Predicates.or(Iterable<Predicate<T>> predicates);
Predicates.or(Predicate<T> ...predicates);

Using the Predicates.not method
The Predicates.not method takes a Predicate object and performs a logical
negation of the component Predicate. Suppose we want to find cities with
populations of over 500,000. Instead of having to write another Predicate,
we can use Predicate.not on our existing PopulationPredicate object:

Predicate largeCityPredicate =
Predicate.not(smallPopulationPredicate);

Using the Predicates.compose method
The Predicates.compose method takes Function and Predicate as arguments
and evaluates the given Predicate instance on the output returned from Function.
In the following example, we are going to introduce a new Predicate:

public class SouthwestOrMidwestRegionPredicate implements
Predicate<State> {

 @Override
 public boolean apply(State input) {

Chapter 3

[35]

 return input.getRegion().equals(Region.MIDWEST) ||
 input.getRegion().equals(Region.SOUTHWEST);
 }
}

Next, we are going to re-use state lookup Function to create a Predicate that
will evaluate whether the state returned from our function is located in either
the midwest or the southwest:

Predicate<String> predicate =
Predicates.compose(southwestOrMidwestRegionPredicate,lookup);

Using the Supplier interface
The Supplier interface is an interface with one method and is shown as follows:

public interface Supplier<T> {
 T get();
}

The get method returns an instance of type T and only of that type. The Supplier
interface helps us implement several of the typical creational patterns. When get
is called, we could always return the same instance (singleton) or a new instance
with each invocation. A Supplier interface also gives you the flexibility to use lazy
instantiation by not constructing an instance until the get method is called. Also,
since the Supplier is an interface, unit testing becomes much easier, as compared
to other approaches for creating objects such as a static factory method. In short,
the power of the Supplier interface is that it abstracts the complexity and details of
how an object needs to be created, leaving the developer free to create an object in
whatever way he/she feels is the best approach. Let's take a look at how we might
use a Supplier interface.

An example of the Supplier interface
The following code is an example of the Supplier interface:

public class ComposedPredicateSupplier implements
Supplier<Predicate<String>> {

 @Override
 public Predicate<String> get() {
 City city = new City("Austin,TX","12345",250000, Climate.SUB_
TROPICAL,45.3);

Functional Programming with Guava

[36]

 State state = new State("Texas","TX", Sets.newHashSet(city),
Region.SOUTHWEST);
 City city1 = new City("New York,NY","12345",2000000,Climate.
TEMPERATE,48.7);
 State state1 = new State("New York","NY",Sets.
newHashSet(city1),Region.NORTHEAST);
 Map<String,State> stateMap = Maps.newHashMap();
 stateMap.put(state.getCode(),state);
 stateMap.put(state1.getCode(),state1);
 Function<String,State> mf = Functions.forMap(stateMap);
 return Predicates.compose(new RegionPredicate(), mf);
 }
}

In this example, we can see that we are using Functions.forMap to create a
Function instance that looks up a state in the United States by its abbreviation, and
then uses a Predicate instance to evaluate which region in the country the state is
found in. Then we are using the Function and Predicate instances as arguments
to the Predicates.compose method whose result is returned by a call to the get
method. We also used two static factory methods, Maps.newHashMap() and Sets.
newHashSet(), both of which are Guava utility classes found in the com.google.
common.collect package and which will be covered in the next chapter. Note that
here we are choosing to return a new instance each time. We could have just as easily
done all of this work in the constructor of the ComposedPredicateSuplier class
and returned the same instance with each call to get, but as we will see next, Guava
provides an easier alternative.

Using the Suppliers class
As we have come to expect with Guava, there is a companion Suppliers class
with static methods for working with Supplier instances. In the previous example,
a new instance was returned with each invocation of the get method. If we wanted
to change our approach and return the same instance each time, Suppliers gives us
a few options.

Chapter 3

[37]

Using the Suppliers.memoize method
The Suppliers.memoize method returns a Supplier instance that wraps a provided
delegate Supplier instance. When the first call to get is executed, the call is passed
to the delegate Supplier instance; it creates and returns the instance to the wrapping
Supplier object. The wrapping Supplier object caches the instance before returning
it to the caller. All subsequent calls to the get method return the cached instance.
Here's how we
could use Suppliers.memoize:

Supplier<Predicate<String>> wrapped =
Suppliers.memoize(composedPredicateSupplier);

By adding just one line of code, we can now return the same instance of the
Predicate object with each call to the Supplier object.

Using the Suppliers.memoizeWithExpiration
method
The Suppliers.memoizeWithExpiration method works in the exact same manner
as its memoize brother with the exception that after a given period of time when
get is called, the wrapper Supplier object retrieves the instance from the delegate
Supplier. object The wrapper Supplier instance then caches the instance for the
given period of time. Take note that the instance is not held in a physical cache;
rather the wrapping Supplier object keeps an instance variable that is set to the
value returned by the delegate Supplier object. Here's an example:

Supplier<Predicate<String>> wrapped =
Suppliers.memoize(composedPredicateSupplier,10L,TimeUnit.MINUTES);

Here we've wrapped Supplier again and set the timeout to be 10 minutes.
For ComposedPredicateSupplier, it won't make much difference; but for Supplier
that is returning an object that could have changes, something retrieved from a
database, for example, the memoizeWithExpiration method, could be very helpful.

Functional Programming with Guava

[38]

Using the Supplier interface with dependency injection is a powerful
combination. However, if you are using Guice (a dependency injection
framework from Google), it has a Provider<T> interface that provides
the same functionality as the Supplier<T> interface. Of course, if you
wanted to take advantage of the caching with expiration features, you
would have to use the Supplier interface.

Summary
We've seen how Guava can add some functional aspects to Java with the Function
and Predicate interfaces. The Function interface provides us with the ability to
transform objects and the Predicate interface gives us a powerful mechanism for
filtering. The Functions and Predicates classes also help us write code that is
easier to maintain and much easier to change. Suppliers help by providing essential
collaborating objects while completely hiding the details of how those objects are
created. Combined with a dependency injection framework such as Spring or Guice,
these interfaces will allow us to seamlessly change the behavior of our programs by
simply providing a different implementation. In the next chapter, we dive into the
workhorse of Google Guava: Collections.

Working with Collections
Collections are essential to any programming language. We simply cannot write
a program of any significance without using collections. The Guava library has its
history rooted in working with collections, starting out as google-collections. The
Google Collections Library has long since been abandoned, and all the functionality
from the original library has been merged into Guava. We can get a sense of the
importance of working with collections just by looking at the number of classes in
the com.google.common.collect package; by far, it contains the largest number of
classes compared to the other packages in Guava. Given the size of the com.google.
common.collect package, we simply won't be able to cover everything. But we
will attempt to cover those things that are especially powerful and those that we are
likely to need on a daily basis. Specifically, we will be covering the following things
in this chapter:

• Classes with useful static methods for working with lists, maps, and sets
• The Range class used to represent the boundaries around a continuous

set of values
• Immutable Collections
• Bimaps, which are maps where we can navigate from values to keys

as well as the traditional key-to-value navigation
• The Table collection type, which is a very powerful collection that is

a replacement for using a map of maps
• Multimaps, which allow us to have more than one value associated

with a unique key
• The FluentIterable class, which presents a set of powerful interfaces

for working with Iterable instances
• The Ordering class that gives us enhanced abilities when working

with Comparators

Working with Collections

[40]

The FluentIterable class
The FluentIterable class presents a powerful interface for working with Iterable
instances in the fluent style of programming. The fluent programming style allows
us to chain method calls together, making for a more readable code.

Using the FluentIterable.filter method
The FluentIterable.filter method takes a Predicateas an argument. Then
every element is examined and retained if the given Predicate holds true for it.
If no objects satisfy the Predicate, an empty Iterable will be returned. In this
example, we are going to demonstrate using the from and filter methods:

 @Before
 public void setUp() {
 person1 = new Person("Wilma", "Flintstone", 30, "F");
 person2 = new Person("Fred", "Flintstone", 32, "M");
 person3 = new Person("Betty", "Rubble", 31, "F");
 person4 = new Person("Barney", "Rubble", 33, "M");
 personList = Lists.newArrayList(person1, person2, person3,
person4);
 }

 @Test
 public void testFilter() throws Exception {
 Iterable<Person> personsFilteredByAge=
FluentIterable.from(personList).filter(new Predicate<Person>() {
 @Override
 public boolean apply(Person input) {
 return input.getAge() > 31;
 }
 });

 assertThat(Iterables.contains(filtered, person2),
is(true));
 assertThat(Iterables.contains(filtered, person4),
is(true));
 assertThat(Iterables.contains(filtered, person1),
is(false));
 assertThat(Iterables.contains(filtered, person3),
is(false));
 }

Chapter 4

[41]

In the setUp method, we create the personList list by calling the static factory's
Lists.newArrayList() method with four Person objects. Then in testFilter,
we create personsFilteredByAge by passing the personList parameter to
the FluentIterable.from() method chained with the filter method with
a Predicate parameter. In our assertThat statements, we see the use of the
Iterables.contains method to verify the results. Iterables is a utility
class for working with Iterable instances.

Using the FluentIterable.transform method
The FluentIterable.transform method is a mapping operation where Function
is applied to each element. This yields a new iterable having the same size as the
original one, composed of the transformed objects. This differs from the filter
method, which may remove any or all of the original elements. Here we demonstrate
the transform method, re-using the data created in the setUp method from the
previous example:

@Test
 public void testTransform() throws Exception {
 List<String> transformedPersonList =
FluentIterable.from(personList).transform(new Function<Person,
String>() {
 @Override
 public String apply(Person input) {

 return Joiner.on('#').join(input.getLastName(),
input.getFirstName(), input.getAge());
 }
 }).toList();
 assertThat(transformed.get(1), is("Flintstone#Fred#32"));
 }

In this example, we are transforming each object in personList into a # delimited
string composed of the last name, first name, and age of the given Person object. We
have the FluentIterable.from method, this time chained with transform passing
in Function, but we have also chained a third method, toList, which returns the
final result as List<String>. There are also the toSet, toMap, toSortedList, and
toSortedSet methods available. The toMap method considers the elements of the
FluentIterable instance to be the keys, and requires Function to map values to
those keys. Both the toSortedList and toSortedSet methods take a Comparator
parameter to specify the order. There are several other methods not covered here,
and given the very large number of classes that implement or extend the Iterable
interface, FluentIterable is a very useful tool to have at our disposal.

Working with Collections

[42]

Lists
Lists is a utility class for working with the List instances. One of the biggest
conveniences provided is the ability to create new List instances:

List<Person> personList = Lists.newArrayList();

Using the Lists.partition method
The Lists.partition() method is an interesting method that returns sublists
of size n from a given list. For example, assume that you have previously created
four Person objects and have created List with the following static factory method
in the Lists class:

List<Person> personList =
Lists.newArrayList(person1,person2,person3,person4);

Then we call the Lists.partition() method specifying two partitions:

List<List<Person>> subList = Lists.partition(personList,2);

In this example, the subList list would contain [[person1,person2],[person3,
person4]]. The partition method returns consecutive sublists of the same size,
with the exception of the last sublist, which may be smaller. For example, if 3 were
passed in as the size for the sublist method, Lists.partition() would have
returned [[person1,person2,person3],[person4]].

Sets
Sets is a utility class for working with Set instances. There are static factory
methods for creating HashSets, LinkedHashSets (Set instances that guarantee
items stay in the same order as they are added), and TreeSets (items are sorted
by their natural order or by a provided Comparator). We are going to cover the
methods in the Sets class that we can use for creating new permutations of a set
(subsets and union), or operations that can inform us whether the Set instances have
anything in common or not (difference and intersection). While there is a filter
method, that functionality has already been covered and won't be repeated here.

Chapter 4

[43]

Using the Sets.difference method
The Sets.difference method takes two set instance parameters and returns
SetView of the elements found in the first set, but not in the second. SetView is a
static, abstract inner class of the Sets class and represents an unmodifiable view of
a given Set instance. Any elements that exist in the second set but not in the first set
are not included. For example, the following would return a SetView instance with
one element, "1":

Set<String> s1 = Sets.newHashSet("1","2","3");
Set<String> s2 = Sets.newHashSet("2","3","4");
Sets.difference(s1,s2);

If we were to reverse the order of the arguments, a SetVeiw instance with one
element, "4", would have been returned.

Using the Sets.symmetricDifference method
The Sets.symmetricDifference method returns elements that are contained in one
set or the other set, but not contained in both. The returned set is an unmodifiable
view. Using the previous example, we have:

Set<String> s1 = Sets.newHashSet("1","2","3");
Set<String> s2 = Sets.newHashSet("2","3","4");
Sets.SetView setView = Sets.symmetricDifference(s1,s2);
//Would return [1,4]

Using the Sets.intersection method
The Sets.intersection method returns an unmodifiable SetView instance
containing elements that are found in two Set instances. Let us take a look
at the following example:

@Test
 public void testIntersection(){
 Set<String> s1 = Sets.newHashSet("1","2","3");
 Set<String> s2 = Sets.newHashSet("3","2","4");
 Sets.SetView<String> sv = Sets.intersection(s1,s2);
 assertThat(sv.size()==2 && sv.contains("2") &&
sv.contains("3"),is(true));

Working with Collections

[44]

Using the Sets.union method
The Sets.union method takes two sets and returns a SetView instance that contains
elements that are found in either set. Let us take a look at the following example:

@Test
 public void testUnion(){
 Set<String> s1 = Sets.newHashSet("1","2","3");
 Set<String> s2 = Sets.newHashSet("3","2","4");
 Sets.SetView<String> sv = Sets.union(s1,s2);
 assertThat(sv.size()==4 &&
 sv.contains("2") &&
 sv.contains("3") &&
 sv.contains("4") &&
 sv.contains("1"),is(true));
 }

Maps
Maps are one of the essential data structures we programmers use on a daily basis.
Given their heavy usage, any method that makes creating and working with maps
easier is bound to be a productivity booster to Java programmers. The Maps utility
class in Guava offers such help. First we will examine methods that make it much
easier to construct a map from an existing collection of objects. It's a very common
practice to have a collection of objects and have the need to create a map of those
objects, usually to serve as some sort of cache or to enable fast lookups. For the next
example, let's assume we have a List of Book objects and we would like to store them
in a map with the ISBN number as the key. First, a possible way of converting List
into Map in Java is as follows:

List<Book> books = someService.getBooks();
Map<String,Book> bookMap = new HashMap<String,Book>()
for(Book book : books){
 bookMap.put(book.getIsbn(),book);
}

While the preceding code is straightforward, we can do better.

Chapter 4

[45]

Using the Maps.uniqueIndex method
The Maps.uniqueIndex method takes either an iterable or iterator of a given type
and Function as arguments. The elements represented by the iterator/iterable
become the values for the map, while Function is applied to each element and
generates the key for that element. So if we were to rework on our previous
example, we would have something as follows:

List<Book> books = someService.getBooks();
Map<String,Book>bookMap = Maps.uniqueIndex(books.iterator(),new
Function<Book, String>(){
 @Override
 public String apply(Book input) {
 return input.getIsbn();
 }
 };)

In this example, we are providing the iterator from the books' List object and
defining a function that extracts the ISBN number for each book, which will be
used as the key for the Book object in the map. Although the example is using an
anonymous class for Function, if we were to have Function passed in either by a
method call or with dependency injection, we could easily change the algorithm for
generating the key for the Book object, with no impact to the surrounding code.

Using the Maps.asMap method
While the Maps.uniqueIndex method uses Function to generate keys from the
given values, the Maps.asMap method does the inverse operation. The Maps.asMap
method takes a set of objects to be used as keys, and Function is applied to each key
object to generate the value for entry into a map instance. There is another method,
Maps.toMap, that takes the same arguments with the difference being ImmutableMap
is returned instead of a view of the map. The significance of this is that the map
returned from the Maps.asMap method would reflect any changes made to the
original map, and the map returned from the Maps.toMap method would remain
unchanged from changes to the original map.

Working with Collections

[46]

Transforming maps
There are some great methods in the Maps class that are used to transform the map's
values. The Maps.transformEntries method uses a Maps.EntryTransformer
interface that derives a new value for the same key, based on the key and value
from the original map. There is another method, Maps.transformValues, which
uses Function that takes the map's original value and transforms it into a new
value for the same key in the original map.

Multimaps
While maps are great data structures that are used constantly in programming,
there are times when programmers need to associate more than one value with a
given key. While we are free to create our own implementations of maps that have
a list or set as a value, Guava makes it much easier. The static factory methods return
map instances that give us the familiar semantics of the put(key,value) operation.
The details of checking if a collection exists for the given key and creating one if
necessary, then adding the value to that collection, are taken care of for us. Let's
dive in and explore this powerful abstraction.

ArrayListMultimap
ArrayListMulitmap is a map that uses ArrayList to store the values for
the given key. To create an ArrayListMultimap instance, we use one of the
following methods:

• ArrayListMultimap<String,String> multiMap =
ArrayListMultimap.create();

• ArrayListMutilmap<String,String> multiMap =
ArrayListMultimap.create(numExcpectedKeys,numExpectedValuesPer
Key);

• ArrayListMulitmap<String,String> mulitMap =
ArrayListMultimap.create(listMultiMap);

The first option simply creates an empty ArrayListMultimap instance with the
default sizes for the keys and ArrayList value. The second method sets the initial
size for the expected number of keys and the expected size of ArrayList for holding
the values. The last method simply creates a new ArrayListMultimap instance using
the keys and values of the supplied Multimap parameter. Let's demonstrate how to
use ArrayListMultimap with the following example:

@Test
 public void testArrayListMultiMap(){

Chapter 4

[47]

 ArrayListMultimap<String,String> multiMap =
ArrayListMultimap.create();
 multiMap.put("Foo","1");
 multiMap.put("Foo","2");
 multiMap.put("Foo","3");
 List<String> expected = Lists.newArrayList("1","2","3");
 assertEquals(multiMap.get("Foo"),expected);
}

Here we are creating a new multimap and then adding three values for the same key.
Note that we just create the multimap and then start adding keys and values with
the familiar put method call. Finally we call get for the Foo key and confirm that it
returned a List with the expected values.

Now let's consider another usage. What do we think would happen if we try to add
the same key-value pair more than once? Consider the following example as a unit
test and think about whether it's going to pass or not:

@Test
 public void testArrayListMultimapSameKeyValue(){
 ArrayListMultimap<String,String> multiMap =
ArrayListMultimap.create();
 multiMap.put("Bar","1");
 multiMap.put("Bar","2");
 multiMap.put("Bar","3");
 multiMap.put("Bar","3");
 multiMap.put("Bar","3");
 List<String> expected = Lists.
newArrayList("1","2","3","3","3");
 assertEquals(multiMap.get("Bar"),expected);
 }

Considering that a List does not force its elements to be unique, the unit test shown
previously passes. We are simply adding another element to a List that is associated
with a given key. Now it's time for a short quiz. Consider the following multimap:

 multiMap.put("Foo","1");
 multiMap.put("Foo","2");
 multiMap.put("Foo","3");
 multiMap.put("Bar","1");
 multiMap.put("Bar","2");
 multiMap.put("Bar","3");

Working with Collections

[48]

What is the result of the multiMap.size()call? It's 6, not 2. The call to size() takes
into account all values found in each List, and not the total number of List instances
in the map. Additionally, a call to values() returns a collection containing all six
values, not a collection containing two lists with three elements each. While this may
seem puzzling at first, we need to remember that the multimap is not a true map. But
if we need typical map behavior, we would do the following:

Map<String,Collection<String>> map = multiMap.asMap();

The call to asMap() returns a map where each key points to the corresponding
collection in the original multimap. The returned map is a live view, and changes
to the view would be reflected in the underlying multimap. Also, keep in mind that
the returned map would not support the put(key,value) call as before. We've
spent a fair amount of time talking about ArrayListMultimap, but there are other
implementations of the multimap.

HashMultimap
HashMultimap is based on hash tables. Unlike ArrayListMultimap, inserting
the same key-value pair multiple times is not supported. Let us take a look at the
following example:

 HashMultimap<String,String> multiMap =
HashMultimap.create();
 multiMap.put("Bar","1");
 multiMap.put("Bar","2");
 multiMap.put("Bar","3");
 multiMap.put("Bar","3");
 multiMap.put("Bar","3");

In this example, we are inserting the same value for the Bar key three times.
However, when we call multiMap.size(), 3 is returned, as only distinct
key-value pairs are kept. Apart from not supporting duplicate key-value
inserts, the functionality is close enough that we don't need to repeat it.

Before we move on, it's worth mentioning some of the other implementations
of multimap. First, there are three immutable implementations:
ImmutableListMultimap, ImmutableMultimap, and ImmutableSetMultimap.
There is LinkedHashMultimap, which returns collections for a given key that have
the values in the same order as they were inserted. Finally, we have TreeMultimap
that keeps the keys and values sorted by their natural order or the order specified by
a comparator.

Chapter 4

[49]

BiMap
Next to being able to have multiple values for a key in a map, is the ability to
navigate from a value to a key in a map. The bimap gives us that functionality.
The bimap is unique, in that it keeps the values unique in the map as well as the
keys, which is a prerequisite to invert the map and navigate from a value to a key.
The bimap operates differently when it comes to adding values into the map. Let
us take a look at the following example:

 BiMap<String,String> biMap = HashBiMap.create();
 biMap.put("1","Tom");
 //This call causes an IllegalArgumentException to be
thrown!
 biMap.put("2","Tom");

In this example, we are adding two different keys with the same value, which is an
expected behavior for a traditional map. But when using a bimap, inserting a new
key with a value that already exists in the map causes IllegalArgumentException
to be thrown.

Using the BiMap.forcePut method
In order to add the same value with a different key, we need to call
forcePut(key,value). The BiMap.forcePut call will quietly remove the map entry
with the same value before placing the key-value pair in the map. Obviously, if it's
the same key and value, the net effect on the map is nothing. However, if the value
is the same and the key is different, the previous key is discarded. The following is a
simple unit test to illustrate the point:

 @Test
 public void testBiMapForcePut() throws Exception {
 BiMap<String,String> biMap = HashBiMap.create();
 biMap.put("1","Tom");
 biMap.forcePut("2","Tom");
 assertThat(biMap.containsKey("1"),is(false));
 assertThat(biMap.containsKey("2"),is(true));
 }

Working with Collections

[50]

What we are doing in the previous test is adding the value Tom with the key 1.
We then add the Tom value again with a key of 2, this time using the forcePut
method. In the preceding example, the original key (1) is discarded and we now
have a new key (2) pointing to the value of Tom. This behavior makes complete
sense. Since the values map to keys when the inverse method is called, one of the
values (a previous key) would be overwritten. So using the forcePut method is an
explicit way of stating that we would like to replace the current key as opposed to
getting unexpected behavior.

Using the BiMap.inverse method
Now let's take a look at using the inverse method:

 @Test
 public void testBiMapInverse() throws Exception {
 BiMap<String,String> biMap = HashBiMap.create();
 biMap.put("1","Tom");
 biMap.put("2","Harry");
 assertThat(biMap.get("1"),is("Tom"));
 assertThat(biMap.get("2"),is("Harry"));
 BiMap<String,String> inverseMap = biMap.inverse();
 assertThat(inverseMap.get("Tom"),is("1"));
 assertThat(inverseMap.get("Harry"),is("2"));
 }

In the preceding example, we are adding key-value pairs of ("1","Tom") and
("2","Harry") and asserting that "1" points to the value "Tom" and "2" points to the
value "Harry". Then we call inverse on the original BiMap and assert that "Tom"
points to "1" and "Harry" points to "2". Although we only covered the HashBiMap
method here, there are also implementations of EnumBiMap, EnumHashBiMap, and
ImmutableBiMap.

Table
Maps are very powerful collections that are commonly used in programming. But
there are times when a single map is not enough; we need to have a map of maps.
While very useful, creating and using them in Java can be cumbersome. Fortunately,
Guava has provided a table collection. A table is a collection that takes two keys, a
row, and a column, and maps those keys to a single value. While not explicitly called
out as a map of maps, however, the table gives us the desired functionality and is
much easier to use.

Chapter 4

[51]

There are several implementations of a table, and for our examples, we will
be working with HashBasedTable, which stores data in Map<R, Map<C, V>>.
Creating an instance of HashBasedTable comes with the ease we have come to
expect from working with Guava:

HashBasedTable<Integer,Integer,String> table =
HashBasedTable.create();
//Creating table with 5 rows and columns initially
HashBasedTable<Integer,Integer,String> table =
HashBasedTable.create(5,5);

//Creating a table from an existing table
HashBasedTable<Integer,Integer,String> table =
HashBasedTable.create(anotherTable);

Table operations
The following are some examples of common operations we do with a Table
instance:

HashBasedTable<Integer,Integer,String> table =
HashBasedTable.create();

table.put(1,1,"Rook");
table.put(1,2,"Knight");
table.put(1,3,"Bishop");

boolean contains11 = table.contains(1,1);
boolean containColumn2 = table.containsColumn(2);
boolean containsRow1 = table.containsRow(1);
boolan containsRook = table.containsValue("Rook");
table.remove(1,3);
table.get(3,4);

The previous example methods are exactly what we would expect to see in a map,
but consider the concise manner we can go about accessing values as opposed to
doing so with a traditional map of maps structure.

Working with Collections

[52]

Table views
The table provides some great methods for obtaining different views of the
underlying data in the table:

Map<Integer,String> columnMap = table.column(1);
Map<Integer,String> rowMap = table.row(2);

The column method returns a map where the keys are all row-value mappings
with the given column's key value. The row method returns the converse, returning
column-value mappings with the given row's key value. The maps returned are live
views and change to columnMap and rowMap, or the original table would be reflected
in the other. There are other implementations of the table we should discuss briefly
as follows:

1. ArrayTable is an implementation of the table backed by a
two-dimensional array.

2. There is an ImmutableTable implementation. Since ImmutableTable
can't be updated after it's created, the row, key, and values are added
using ImmutableTable.Builder, which leverages a fluent interface
for ease of construction.

3. A TreeBasedTable table where the row and column keys are ordered,
either by the natural order or by specified comparators for the row and
column keys.

This concludes our discussion of the many map implementations found in
Guava, and we now move on to other classes found in the com.google.common.
collect package.

Range
The Range class allows us to create a specific interval or span of values with
defined endpoints, and works with Comparable types. The Range objects can
define endpoints that are either inclusive (closed), which includes the end value
of the Range instance, or exclusive (open), which does not include the end value
of the Range instance. Range is better understood with a code example as follows:

Range<Integer> numberRange = Range.closed(1,10);
//both return true meaning inclusive
numberRange.contains(10);
numberRange.contains(1);

Chapter 4

[53]

Range<Integer> numberRange = Range.open(1,10);
//both return false meaning exclusive
numberRange.contains(10);
numberRange.contains(1);

We can create Range objects with a variety of boundary conditions such as
openClosed, closedOpen, greaterThan, atLeast, lessThan, and atMost.
All of the listed conditions mentioned in this list are static factory methods
that return the desired range.

Ranges with arbitrary comparable objects
Since Range objects work with any object that implements the Comparable
interface, it makes it easy to create a filter for working with only those objects
that fall within our desired boundaries. For example, consider the Person class
we introduced before:

public class Person implements Comparable<Person> {

 private String firstName;
 private String lastName;
 private int age;
 private String sex;

 @Override
 public int compareTo(Person o) {
 return ComparisonChain.start().
 compare(this.firstName,o.getFirstName()).
 compare(this.lastName,o.getLastName()).
 compare(this.age,o.getAge()).
 compare(this.sex,o.getSex()).result();
 }

We would like to create a Range instance for the Person objects where the age is
between 35 and 50. But if you look at the compareTo method, we have a slight
problem; it includes all the fields in the object. To solve this problem, we are going
to leverage the fact that the Range object implements the Predicate interface.
Additionally, we are going to use the Predicates.compose method to create a new
Predicate composed of Range and Function. First, let's define our Range instance:

Range<Integer> ageRange = Range.closed(35,50);

Working with Collections

[54]

Next, we will create Function that accepts a Person object and returns the age:

Function<Person,Integer> ageFunction = new Function<Person,
Integer>() {
 @Override
 public Integer apply(Person person) {
 return person.getAge();
 }
 };

Finally, we create our composed Predicate:

Predicate<Person> predicate =
Predicates.compose(ageRange,ageFunction);

Now we could have just as easily created a Predicate instance to validate an age
range. But by using composition, we can substitute either a new Range object or
a new Comparable object. The Range object presents an opportunity to perform
powerful operations and make other tasks, for example, filtering, more concise.

Immutable collections
Throughout this chapter, we have seen several examples of creating collections.
But most, if not all, of the methods we have looked at so far return mutable
collections. However, if we don't explicitly have a need for a mutable collection,
we should always favor using an immutable one. First of all, immutable collections
are completely thread-safe. Secondly, they offer protection from unknown users
who may try to access your code. Fortunately, Guava provides a vast selection of
immutable collections. As a matter of fact, for each collection type we have covered
in this chapter, there is a suitable immutable version.

Creating immutable collection instances
Since the functionality is really no different from the collection's mutable counterparts,
we will only cover the one major difference between the two, by using the Builder
pattern to create an instance. All of the Guava immutable collections have a static
nested Builder class that uses the fluent interface approach to create the desired
instance. Let's use ImmutableListMultimap.Builder in the following example:

MultiMap<Integer,String> map = new
ImmutableListMultimap.Builder<Integer,String>()
.put(1,"Foo")
.putAll(2,"Foo","Bar","Baz")

Chapter 4

[55]

.putAll(4,"Huey","Duey","Luey")

.put(3,"Single").build();

In this example, we are simply instantiating new Builder, adding the required
keys and values, and then calling the build method at the end, which returns
ImmutableListMultiMap.

Ordering
Sorting collections is a key issue in programming. Given the fact that useful
collection abstractions are essential to programming, it also stands to reason that
good sorting tools are just as essential. The Ordering class provides us with tools
that we need for applying different sorting techniques powerfully and concisely.
Ordering is an abstract class. While it implements the Comparator interface,
Ordering has the compare method declared as abstract.

Creating an Ordering instance
There are two ways in which you can create an instance of Ordering:

• Creating a new instance and providing an implementation for the compare
method.

• Using the static Ordering.from method that creates an instance of Ordering
from an existing Comparator.

How we go about it depends on whether we need to explicitly create a new
Comparator instance, or have an existing one where we want to take advantage
of the extra features the Ordering class provides.

Reverse sorting
Consider we have the following Comparator instance for the City objects to sort by
the population size:

public class CityByPopluation implements Comparator<City> {

 @Override
 public int compare(City city1, City city2) {
 return Ints.compare(city1.getPopulation(),city2.
getPopulation());
 }
}

Working with Collections

[56]

If we were to use the CityByPopulation comparator to sort a collection of City
objects, the list would be sorted in its natural order, from smallest to largest. But what
if we wanted to have the list sorted from largest to smallest? This can be done easily:

Ordering.from(cityByPopluation).reverse();

What we are doing in this example is creating a new Ordering object from the
existing CityByPopulation comparator and specifying that the sort order is to
be reversed, from largest to smallest.

Accounting for null
When sorting, we always need to consider how we will treat null values. Do we
put them first or last? Ordering makes either decision very easy to implement:

Ordering.from(comparator).nullsFirst();

In the preceding example, we are creating an instance of Ordering and immediately
calling the nullsFirst method, which returns an Ordering instance that treats the
null values as less than any other value in the collection, and as a result, places them
first in the list. There is also a corresponding Ordering.nullsLast call, which places
nulls last in the collection when sorted.

Secondary sorting
Often when sorting objects, we need to handle the case of our sorting criterion
being equal, and we define a secondary sorting criterion. Previously, we defined
Comparator for sorting the City objects by population, now we have another
Comparator:

public class CityByRainfall implements Comparator<City> {

 @Override
 public int compare(City city1, City city2) {
 return Doubles.compare(city1.getAverageRainfall(),city2.
getAverageRainfal
l());
 }
}

Chapter 4

[57]

In the preceding code, Comparator will sort the City objects by their average rainfall
per year. Here's how we can use an additional Comparator:

Ordering.from(cityByPopulation).compound(cityByRainfall);

Here we are creating an Ordering instance from CityByPopulationComparator.
We are then calling the compound method, which takes another CityByRainfall
comparator in this case. Now when the City objects that have the same population
are being sorted, the Ordering instance will delegate to the secondary comparator.
Here's an example:

@Test
 public void testSecondarySort(){
 City city1 = cityBuilder.population(100000).
averageRainfall(55.0).build();
 City city2 = cityBuilder.population(100000).
averageRainfall(45.0).build();
 City city3 = cityBuilder.population(100000).
averageRainfall(33.8).build();
 List<City> cities = Lists.newArrayList(city1,city2,city3);
 Ordering<City> secondaryOrdering = Ordering.
from(cityByPopulation).compound(cityByRainfall);
 Collections.sort(cities,secondaryOrdering);
 assertThat(cities.get(0),is(city3));
 }

Retrieving minimum and maximum values
Finally, we look at how Ordering allows us to easily retrieve the minimum or
maximum values from a collection.

Ordering<City> ordering = Ordering.from(cityByPopluation);
List<City> topFive = ordering.greatestOf(cityList,5);
List<City> bottomThree = ordering.leastOf(cityList,3);

Here we are creating an Ordering instance from the now familiar
CityByPopulation comparator. We then call the greatestOf method with a list of
City objects and an integer. The Ordering.greatestOf method will return the n
greatest elements (five greatest elements in this case). The second example, leastOf,
takes the same arguments, but performs the opposite action, returning the n least
elements (three in our preceding example). While we are using lists in the previous
examples, the greatestOf and leastOf methods also accept Iterable<T>. While
we won't show examples here, Ordering also has methods that will retrieve a
maximum or minimum value.

Working with Collections

[58]

Summary
We've learned about the very useful and versatile FluentIterable class. We
saw how we can have more than one value associated with a given key with the
multimap, and how we can use the bimap to navigate from values to keys. We
covered the Table collection, which is a great abstraction for a map of maps. We
learned about the Range object and how we can use it to determine the boundaries
of the values contained in a collection. Immutable collections are a very important
part of our programming arsenal, and we learned the importance of using them as
well as creating an immutable collection. Finally we learned about the powerful
Ordering class, which makes the important task of sorting easier. Next, we take
a look at the tools that Guava provides us for working with concurrency.

Concurrency
As Guava has grown from methods to help you work from Java collections to an
all-purpose library, one of the areas where Guava really shines is concurrency.
When Java 5 introduced the java.util.concurrent package, concurrency in Java
became easier to implement. Guava builds on top of those constructs. The classes
found in com.google.util.concurrent give us some very useful features in
addition to those already found in Java's java.util.concurrent package.

In this chapter we are going to cover:

• The Monitor class that functions as a Mutex, ensuring serial access to the
defined areas in our code, much like the synchronized keyword but with
much easier semantics and some useful additional features.

• The ListenableFuture class that functions the same way the Listenable
class does from Java, with the exception that we can register a callback
method to run once the Future has itself been completed.

• The FutureCallback class that gives us access to the result of a Future task
allowing us to handle success and failure scenarios.

• The SettableFuture, AsyncFunction, and FutureFallback classes that are
useful utility classes we can use when working with Future instances and
doing asynchronous transformation of objects.

• The Futures class that is a class with useful static methods for working with
Future instances.

• The RateLimiter class that restricts how often threads can access a resource.
It is very much like a semaphore but instead of limiting access by a total
number of threads, the RateLimiter class restricts access based on time.

Concurrency

[60]

There are several classes we are going to cover in this chapter that
have an @Beta annotation indicating that the functionality of that
class may be subject to change in a future release.

Synchronizing threads
Since Java offers the ability to have multiple threads running in a program,
there are occasions when we need to restrict the access (synchronize) so that
only one thread can access parts of our code at any given time. Java provides
the synchronized keyword that accomplishes this goal of serial access. But using
synchronized has some issues. First, if we need to call wait() on a thread, we
must remember to use a while loop:

while(someCondition){
 try {
 wait();
 } catch (InterruptedException e) {
 //In this case we don't care, but we may want
 //to propagate with Thread.interrupt()
 }
}

Second, if we have more than one condition that can cause a thread to go into a wait
state, we must call notifyAll(), as we don't have the ability to notify threads for
specific conditions. Using notifyAll() instead of notify() is less desirable due to
the thrashing effect it has of waking up all the threads to compete for a lock when
only one will do so. Java 5 introduced the ReentrantLock class and the ability to
create a condition. We can achieve finer granularity by using the ReentrantLock.
newCondition() method and now can wake up a single thread waiting on a
particular condition to occur with a Condition.signal() call (analogous to
notify()), although there is a Condition.signalAll() method that has the
same thrashing effect as calling notifyAll(). But we still have the somewhat
counterintuitive while loop to contend with:

while(list.isEmpty()){
 Condition.await();
}

Fortunately, Guava has an answer to this issue, the Monitor class.

Chapter 5

[61]

Monitor
The Monitor class from Guava gives us a solution that allows multiple conditions
and completely eliminates the possibility of notifying all threads by switching from
an explicit notification system to an implicit one. Let's take a look at an example:

public class MonitorSample {
 private List<String> list = new ArrayList<String>();
 private static final int MAX_SIZE = 10;

 private Monitor monitor = new Monitor();
 private Monitor.Guard listBelowCapacity = new
Monitor.Guard(monitor) {
 @Override
 public boolean isSatisfied() {
 return list.size() < MAX_SIZE;
 }
 };

 public void addToList(String item) throws InterruptedException
{
 monitor.enterWhen(listBelowCapacity);
 try {
 list.add(item);
 } finally {
 monitor.leave();
 }
 }
}

Let's go over the interesting parts of our example. First we are creating a new
instance of a Monitor class. Next we use our newly created Monitor instance
to construct an instance of a Guard class, which has one abstract method called
isSatisfied that returns a boolean. Here our Guard instance returns true when
our List instance contains fewer than ten items. Finally in the addToList method, a
thread will enter the Monitor and add an item to the list when our Guard condition
evaluates to true, otherwise, the thread will wait. Notice the more readable
enterWhen method that will allow a thread to enter the block when the Guard
condition is satisfied. Also take note that we are not explicitly signaling any threads;
it's entirely implied by the Guard condition being satisfied. We've explained the code
example but now let's dig into the Monitor class a little more.

Concurrency

[62]

Monitor explained
When a thread enters a Monitor block, it is considered to occupy that Monitor
instance, and once the thread leaves, it no longer occupies the Monitor block. Only
one thread can enter a Monitor block at any time. The semantics are the same as
using synchronized or ReentrantLocks; a thread enters and no other thread can
enter that area until the current thread releases the lock or in our case, leaves the
Monitor block. The same thread can enter and exit the same Monitor block any
number of times but each entry must be followed by an exit.

Monitor best practice
Monitor methods that return boolean values should always be used within an
if statement that contains a try/finally block to ensure the thread will always
be able to exit the Monitor block.

if (monitor.enterIf(guardCondition)) {
 try {
 doWork();
 } finally {
 monitor.leave();
 }
 }

For Monitor methods that don't return any values, the method class should
immediately be followed by a try/finally block as follows:

 monitor.enterWhen(guardCondition);
 try {
 doWork();
 } finally {
 monitor.leave()
}

Different Monitor access methods
While the Monitor class has several methods for entering a monitor, there are five
basic types that we will describe here.

1. Monitor.enter: The Monitor.enter method will attempt to enter a
monitor and will block indefinitely until the thread enters the monitor.

2. Monitor.enterIf: The Monitor.enterIf method takes Monitor.Guard as
an argument and will block to enter the monitor. Once it enters the monitor,
it will not wait for the condition to be satisfied, but it will return a boolean
indicating whether the Monitor block was entered.

Chapter 5

[63]

3. Monitor.enterWhen: The Monitor.enterWhen method also takes Monitor.
Guard as an argument and blocks, waiting to enter the monitor. However, once
the lock is obtained, it will wait indefinitely for the condition to be satisfied.

4. Monitor.tryEnter: The Monitor.tryEnter method will attempt to access
the monitor but if it is already occupied by another thread, it will not wait
at all to obtain the lock but will return a boolean indicating whether the
Monitor block was entered.

5. Monitor.tryEnterIf: The Monitor.tryEnterIf method attempts to
immediately enter the monitor only if the lock is available and the condition is
satisfied; otherwise, it will not wait for the lock or the condition to be satisfied
but will return a boolean indicating whether the Monitor block was entered.

All of the methods we just saw also have variations that take arguments (long and
TimeUnit) to specify an amount of time needed to wait to acquire the lock, the
condition to be satisfied, or both. While there are several ways to enter a Monitor
block, it's probably a good idea to use one of the timed versions and handle the
condition when the lock is unavailable, or the condition never seems to be satisfied.

ListenableFuture
Java 5 introduced several important concurrent constructs. One of those is
the Future object. A Future object represents the result of an asynchronous
operation. Here's an example:

ExecutorService executor = Executors.newCachedThreadPool();
Future<Integer> future = executor.submit(new Callable<Integer>(){
 public Integer call() throws Exception{
 return service.getCount();
 }
 });
//Retrieve the value of computation
Integer count = future.get();

In our example here, we are submitting a Callable object to the ExecutorService
instance. The ExecutorService instance immediately returns the Future object;
however, that does not imply the task is done. To retrieve the result, we call future.
get(), which may block if the task is not completed. The ListenableFuture
interface extends the Future interface by allowing us to register a callback to be
executed automatically once the submitted task is completed. We accomplish this by
calling the ListenableFuture.addListener method that takes a Runnable instance
and an ExecutorService object, which could be the same Executor instance the
original task was submitted to or another ExecutorService instance entirely.

Concurrency

[64]

Obtaining a ListenableFuture interface
As we have seen, the ExecutorService interface returns a Future object when a
Callable object is submitted. How do we go about getting a ListenableFuture
instance so we can set our callback method? We will wrap our ExecutorService
object with a ListentingExecutorService interface by doing the following:

ListneningExecutorService service =
MoreExecutors.listeningDecorator(executorService);

Here we are using the MoreExecutors class that contains static methods for working
with Executor, ExecutorService and ThreadPool instances. Here's an example
that puts all of this together:

executorService =
MoreExecutors.listeningDecorator(Executors.newFixedThreadPool(NUM_
THREADS));

ListenableFuture<String> listenableFuture =
executorService.submit(new Callable<String>()…);

 listenableFuture.addListener(new Runnable() {
 @Override
 public void run() {
 methodToRunOnFutureTaskCompletion();

 }
 }, executorService);

Let's walk through the steps here. First we are taking an ExecutorService
instance created from a fixed size thread pool and wrapping it with a
ListeningExecutorService instance. Then we are submitting our Callable object
to ListeningExecutorService and getting back our ListenableFuture instance.
Finally we add a listener to run once the original task is completed. It's worth noting
at this point that if the task is completed by the time we set the callback method, it
will be executed immediately. There is a small limitation to the ListenableFuture.
addListener method approach; we have no access to the returned object, and we
can't specify different methods to run for success or failure conditions. Fortunately,
we have an option that gives us that ability.

Chapter 5

[65]

FutureCallback
The FutureCallback interface specifies the onSuccess and onFailure methods.
The onSuccess method takes the result of the Future instance as an argument
so we have access to the result of our task.

Using the FutureCallback
Using the FutureCallback interface is straightforward and works in a similar
manner to registering a callback on the ListenableFuture interface, except we
don't add FutureCallback directly to ListenbleFuture. Instead, we use the
Futures.addCallback method. The Futures class is a collection of static-utility
methods for working with Future instances and will be covered later in this
chapter. Let's look at an example. First consider a very simple implementation
of the FutureCallback interface:

public class FutureCallbackImpl implements FutureCallback<String> {

 private StringBuilder builder = new StringBuilder();

 @Override
 public void onSuccess(String result) {
 builder.append(result).append(" successfully");

 }

 @Override
 public void onFailure(Throwable t) {
 builder.append(t.toString());
 }

 public String getCallbackResult() {
 return builder.toString();
 }
 }

Concurrency

[66]

Here we are capturing the result in onSuccess and appending the text
"successfully" to whatever the result was. In the event of a failure,
we are getting the error message from the Throwable object. Now here's
an example of putting all the pieces together:

ListenableFuture<String> futureTask = executorService.submit
(new Callable<String>(){
 @Override
 public String call() throws Exception{
 return "Task completed";
 }
 });

FutureCallbackImpl callback = new FutureCallbackImpl();
Futures.addCallback(futureTask, callback);
callback.getCallbackResult();
//Assuming success, would return "Task completed successfully"

In this example, we've created our ListenableFuture interface and an instance
of a FutureCallback interface and registered it to be executed once our
ListenableFuture instance is completed. The fact that we are accessing the result
directly is strictly for an example. Typically, we would not want to access the result
from the FutureCallback instance but would rather let FutureCallback handle the
result asynchronously on its own. If the FutureCallback instance you are providing
is going to perform any expensive operations, it's a good idea to use the following
signature for the Futures.addCallback method:

Futures.addCallback(futureTask,callback,executorService);

By using this signature, the FutureCallback operation will be executed on a thread
from the supplied ExecutorService parameter. Otherwise, the thread that executed
the initial ListenableFuture instance would execute the FutureCallback operation
behaving much like the ThreadPoolExecutor.CallerRunsPolicy executor service,
which states that the task will be run on the caller's thread.

SettableFuture
The SettableFuture class is a ListenableFuture interface that we can use
to set the value to be returned, or we can set ListenableFuture to Fail with a
given exception. A SettableFuture instance is created by calling the static create
method. Here's an example:

SettableFuture<String> sf = SettableFuture.create();

//Set a value to return

Chapter 5

[67]

sf.set("Success");

//Or set a failure Exception
sf.setException(someException);

Here we are creating an instance of a SettableFuture class. Then if we wanted to
set a value to be returned, we would call the set method and pass in an instance of
the type expected to be returned by the Future instance. Or, if we wanted to set an
exception that caused an error for this Future instance, we would pass in an instance
of the appropriate exception. The SettableFuture class is very valuable for cases
when you have a method that returns a Future instance, but you already have the
value to be returned and you don't need to run an asynchronous task. We will see
in the next section just how we can use the SettableFuture class.

AsyncFunction
The AsyncFunction interface is closely related to the Function interface we covered
in Chapter 3, Functional Programming with Guava. Both accept an input object. The
difference is that the AsyncFunction interface returns ListenableFuture as an
output object. We call the ListenableFuture.get method when we retrieve the
transformation result of the AsyncFunction interface. The AsyncFunction interface
is used when we want to perform our transformation asynchronously without
having a blocking call (although calling the Future.get method could block if the
task has not been completed). But the AsyncFunction interface is not required to
perform its transformation asynchronously; it's only required to return a Future
instance. Let's look at an example in the following code:

public class AsyncFuntionSample implements
AsyncFunction<Long,String> {

 private ConcurrentMap<Long,String> map = Maps.newConcurrentMap();
 private ListeningExecutorService listeningExecutorService;

 @Override
 public ListenableFuture<String> apply(final Long input) throws
Exception {
 if(map.containsKey(input)) {
 SettableFuture<String> listenableFuture = SettableFuture.
create();
 listenableFuture.set(map.get(input));
 return listenableFuture;

Concurrency

[68]

 }else{
 return listeningExecutorService.submit(new
Callable<String>(){
 @Override
 public String call() throws Exception {
 String retrieved = service.get(input);
 map.putIfAbsent (input,retrieved);
 return retrieved;
 }
 });
 }

 }

Here is our class that implements the AsyncFunction interface and contains an
instance of ConcurrentHashMap. When we call the apply method, we would first
look in our map for the value, given that the input object is considered as a key. If
we find the value in the map, we use the SettableFuture class to create a Future
object and set the value with the retrieved value from the map. Otherwise, we return
the Future object that resulted from submitting Callable to ExecutorService
(also putting the retrieved value in the map for the given key).

FutureFallback
The FutureFallback interface is used as a backup or a default value for a Future
instance that has failed. FutureFallback is an interface with one method,
create(Throwable t).

By accepting a Throwable instance, we can decide whether we should attempt to
recover, return a default value, or propagate the exception. Consider the following
example:

public class FutureFallbackImpl implements FutureFallback<String>
{

 @Override
 public ListenableFuture<String> create(Throwable t) throws
Exception {
 if (t instanceof FileNotFoundException) {
 SettableFuture<String> settableFuture =
SettableFuture.create();
 settableFuture.set("Not Found");

Chapter 5

[69]

 return settableFuture;
 }
 throw new Exception(t);
 }
}

In this simple example, assume we were trying to asynchronously retrieve the
name of a file, but if it's not found, we don't care (for the sake of the example);
so, we create a Future object and set the value to Not Found. Otherwise, we
just propagate the exception.

Futures
Futures is a utility class for working with Future instances. While there are many
methods available, we are going to concentrate on the methods that utilize topics
we've covered in this chapter: AsyncFunctions and FutureFallbacks. We've
already seen some of the methods provided by the Futures class, such as the
Futures.addCallback method used to attach a FutureCallback instance to
run after a ListenableFuture instance has completed its task.

Asynchronous Transforms
We learned about the AsyncFunction interface in this chapter and how it can
be used to asynchronously transform an input object. The Futures class has a
transform method that makes it easy for us to use an AsyncFunction interface:

ListenableFuture<Person> lf =
Futures.transform(ListenableFuture<String> f,
AsyncFunction<String,Person> af);

Here the Futures.transform method returns a ListenableFuture instance whose
result is obtained by performing an asynchronous transformation on the result from
ListenableFuture passed into the function.

Applying FutureFallbacks
We also learned about FutureFallback interfaces and how they can provide us with
the ability to handle errors from ListenableFuture. The Futures.withFallback
method is a seamless way to apply FutureFallback, and is shown as follows:

ListenableFuture<String> lf =
Futures.withFallback(ListenableFuture<String> f,
FutureFallback<String> fb);

Concurrency

[70]

In this example, the returned ListenableFuture instance will have the
result of the given ListenableFuture, if successful, or the result of the
FutureFallback implementation.

In both the previous examples, we also have the option of using an overloaded
method that takes ExceutorService to perform the action of AsyncFunction
or FutureFallback.

There are several other methods for working with Future instances in the
Futures class but going over more of them is left as an exercise for the reader.

RateLimiter
The RateLimiter class operates somewhat like a semaphore but instead of
restricting access by the number of concurrent threads, the RateLimiter class
restricts access by time, meaning how many threads can access a resource per
second. We create a RateLimiter instance by doing the following:

RateLimiter limiter = RateLimiter.create(4.0);

Here we are calling the create method and passing in a double, 4.0, specifying we
don't want more than four tasks submitted per second. We use the RateLimiter class
that is placed right before the call where we want to restrict the rate at which it is
called. It is used in the same way we would use a semaphore. It is shown as follows:

limiter.acquire();
executor.submit(runnable);

In this example, we are calling the acquire method, which blocks until it can
get a permit and access the resource. If we don't want to block at all, we could
do the following:

If(limiter.tryAcquire()){
 doSomething();
}else{
 //Boo can't get in
 doSomethingElse();
}

Here we are calling tryAcquire, which gets a permit if one is available,
otherwise, we immediately execute the next line of code. The tryAcquire
method returns true if the permit was obtained, and false if otherwise. There
is also a version of tryAcquire, where we can specify a time-out where the
call will block for the given amount of time.

Chapter 5

[71]

Summary
In this chapter, we've covered how to use the Monitor class to simplify our
synchronization needs. We explored the ListenableFuture interface that allows
us to specify a callback to run once the asynchronous task is completed. We
learned how to use the FutureCallback class, and the AsyncFunction interface to
asynchronously transform a value, and how the FutureFallback class allows us to
handle errors from a Future interface that has failed. The Futures class provides us
with great utility methods for working with instances of the Future interface. Finally
we learned about the RateLimiter class. In the next chapter, we will cover the great
caching tools offered by Guava.

Guava Cache
In software development, caching is a very important topic. If we are working
on anything other than the simplest of programs, it's next to impossible to not
find yourself in need of some sort of caching mechanism. Even if you need a map
to look up static values, it's still a cache; but most of us don't see it that way. Caching
in Guava gives us more power and flexibility than using plain HashMap but is not
as robust as EHCache or Memcached. In this chapter, we are going to cover the
caching functionality provided by Guava. We are going to elaborate more on
the following topics:

• The MapMaker class for creating ConcurrentMap instances
• The CacheBuilder class that creates LoadingCache and Cache

instances with a fluent builder API
• The CacheBuilderSpec class that creates a CacheBuilder instance

from a formatted string
• The CacheLoader class that is used by a LoadingCache instance to

retrieve a single value for a given key
• The CacheStats class that provides statistics of the performance of the cache
• The RemovalListener class that receives notifications when an entry has

been removed from the cache

There are several classes we are going to cover in this chapter that
have an @Beta annotation indicating that the functionality of the
class may be subject to change in future releases of Guava.

With the introduction complete, let's get started.

Guava Cache

[74]

MapMaker
The MapMaker class is found in the com.google.common.collect package. So
why are we talking about the Collections class in this chapter? Shouldn't we have
covered that class in Chapter 4, Working with Collections? Although we could have
covered the MapMaker class in Chapter 4, Working with Collections, we are going
to treat the MapMaker class as a provider of the most basic caching functionality.
The MapMaker class uses the fluent interface API, allowing us to quickly construct
ConcurrentHashMap. Let's look at the following example:

ConcurrentMap<String,Book> books = new
MapMaker().concurrencyLevel(2)
 .softValues()
 .makeMap();

Here we are creating ConcurrentMap with String keys and Book objects for
the values (specified by the generics on the ConcurrentMap declaration). Our
first method call, concurrencyLevel(), sets the amount of concurrent modifications
we will allow in the map. We've also specified the softValues() method so
the values from the map are each wrapped in a SoftReference object and may
be garbage-collected if the memory becomes low. Other options we could have
specified include weakKeys() and weakValues(), but there is no option for using
softKeys(). When using WeakReferences or SoftReferences for either keys or
values, if one is garbage-collected, the entire entry is removed from the map; partial
entries are never exposed to the client.

Guava caches
Before we go into detail on CacheBuilders, and the usage of Guava caches in
our code, some background information is in order. Guava has two base interfaces
for caching: Cache and LoadingCache. The LoadingCache interface extends the
Cache interface.

Cache
The Cache interface offers mapping from keys to values. But there are a few methods
the Cache interface offers that makes them so much more than what basic HashMap
has to offer. The traditional idiom for working with maps/caches is that we present
a key, and if the cache contains a value for the key, that value is returned. Otherwise,
a null value is returned if no mapping is found for the given key. To place values in a
cache, we would make a method call such as the following:

put(key,value);

Chapter 6

[75]

Here we are explicitly associating the key and value in the cache or map. The Cache
interface in Guava has the traditional put method, but reading from the Cache has
a self-loading idiom with this method:

V value = cache.get(key, Callable<? Extends V> value);

The previous method will retrieve the value if present; otherwise, it will extract
the value from the Callable instance, associate the value with the key, and return
the value. It gives us the ability to replace the procedure in the following pattern
in one call:

value = cache.get(key);
if(value == null){
 value = someService.retrieveValue();
 cache.put(key,value);
}

The use of a Callable object implies that an asynchronous operation could have
occurred. But what do we do if we don't need/want to execute an asynchronous
task? We would use the Callables class from the com.google.common.util.
concurrent package. Callables has one method for working with the Callable
interface as shown in the following example:

Callable<String> value = Callables.returning("Foo");

In the preceding code, the returning() method will construct and return a Callable
instance that will return the given value when the get method on the Callable
instance is executed. So we can reimplement the previous example as follows:

cache.get(key,Callables.returning(someService.retrieveValue());

Keep in mind that if the value is already present, the cached value is returned. If we
prefer the retrieve if available, null otherwise idiom, we have the getIfPresent(key)
method that behaves in a more traditional manner. There are also methods to
invalidate values in the cache. They are as follows:

• invalidate(key): This method discards any value stored for this key
• invalidateAll(): This method discards all the values for the cache
• invalidateAll(Iterable<?> keys): This method discards all the

values for the given keys

Guava Cache

[76]

LoadingCache
The LoadingCache interface extends the Cache interface with the self-loading
functionality. Consider the following example:

Book book = loadingCache.get(id);

In the preceding code, if the book object was not available when the get call was
executed, LoadingCache will know how to retrieve the object, store it in the cache,
and return the value.

Loading values
As implementations of LoadingCache are expected to be thread safe, a call made
to get, with the same key, while the cache is loading would block. Once the value
was loaded, the call would return the value that was loaded by the original call
to the get method. However, multiple calls to get with distinct keys will load
concurrently. If we have a collection of keys and would like to retrieve the
values for each key, we will make the following call:

ImmutableMap<key,value> map = cache.getAll(Iterable<? Extends
key>);

As we can see here, getAll returns ImmutableMap with the given keys and the
values associated with those keys in the cache. The map returned from getAll
could either be all cached values, all newly retrieved values, or a mix of already
cached and newly retrieved values.

Refreshing values in the cache
LoadingCache also provides a mechanism for refreshing values in the cache:

refresh(key);

By making a call to refresh, LoadingCache will retrieve a new value for the key.
The current value will not be discarded until the new value has been returned; this
means that the calls to get during the loading process will return the current value in
the cache. If an exception is thrown during the refresh call, the original value is kept
in the cache. Keep in mind that if the value is retrieved asynchronously, the method
could return before the value is actually refreshed.

Chapter 6

[77]

CacheBuilder
The CacheBuilder class provides a way to obtain Cache and LoadingCache
instances via the Builder pattern. There are many options we can specify on the
Cache instance we are creating rather than listing all of them. Let's run through some
examples so we can get a feel for how we can use caches in Guava. Our first example
demonstrates how to specify invalidating a cache entry after loading it into the cache:

LoadingCache<String,TradeAccount> tradeAccountCache =
CacheBuilder.newBuilder()
 .expireAfterWrite(5L, TimeUnit.Minutes)
 .maximumSize(5000L)
 .removalListener(new
TradeAccountRemovalListener())
 .ticker(Ticker.systemTicker())
 .build(new CacheLoader<String, TradeAccount>() {
 @Override
 public TradeAccount load(String key) throws
Exception {
 return
tradeAccountService.getTradeAccountById(key);
 }
 });

Here we've constructed a LoadingCache for a TradeAccount object as shown
in the following code:

public class TradeAccount {
 private String id;
 private String owner;
 private double balance;
 }

Let's walk through our first example:

1. First, we called expireAfterWrite that will automatically remove the entry
from the cache after the specified time, five minutes in this case.

2. Second, we specified the maximum size of the cache with the maximumSize
call using 5000 as our value. Less recently used entries are subject to be
removed as the size of the cache approaches the maximum size number,
not necessarily when the actual maximum size is met or exceeded.

Guava Cache

[78]

3. We added a RemovalListener instance that will receive notifications
when an entry has been removed from the cache. RemovalListener
will be covered later in this chapter.

4. We added a Ticker instance via the ticker method call that provides
nanosecond-level precision for when entries should be expired.

5. Finally, we called the build method and passed a new CacheLoader
instance that will be used to retrieve the TradeAccount objects when
a key is presented to the cache and the value is not present.

In our next example, we look at how to invalidate cache entries based on how
much time has elapsed since an entry was last accessed.

LoadingCache<String,Book> bookCache = CacheBuilder.newBuilder()
 .expireAfterAccess(20L,TimeUnit.MINUTES)
 .softValues()
 .removalListener(new BookRemovalListener())
 .build(new CacheLoader<String, Book>() {
 @Override
 public Book load(String key) throws Exception
{
 return bookService.getBookByIsbn(key);
 }
 });

In this example, we are doing things slightly differently. Let's take a walk through
this example:

1. We specify that we want entries to expire after 20 minutes have elapsed since
a given entry was last accessed with the expireAfterAccess method call.

2. Instead of explicitly limiting the cache size to a certain value, we let
the JVM limit the size implicitly by wrapping values in the cache with
SoftReferences with a call to softValues(). When memory requirements
are laid down, entries will be removed from the cache. Bear in mind that
which SoftReferences are garbage-collected is determined by a least-
recently-used (LRU) calculation on a JVM-wide scale.

3. Finally, we add the now familiar RemovalListener object and the a
CacheLoader instance to retrieve absent values in the cache.

Chapter 6

[79]

Now for our final example, we show how to automatically refresh values in the
loading cache:

LoadingCache<String,TradeAccount> tradeAccountCache =
CacheBuilder.newBuilder()
 .concurrencyLevel(10)
 .refreshAfterWrite(5L,TimeUnit.SECONDS)
 .ticker(Ticker.systemTicker())
 .build(new CacheLoader<String,
TradeAccount>() {
 @Override
 public TradeAccount load(String key)
throws Exception {
 return
tradeAccountService.getTradeAccountById(key);
 }
 });

In our final example, we have again made some small changes that are explained
as follows:

1. We are providing guidelines for the amount of concurrent update operations
with the concurrencyLevel method call with a value of 10. If not explicitly
set, the default value is 4.

2. Instead of removing values explicitly, we are refreshing values after a given
amount of time has passed. Note that the trigger for the refreshing values is
activated when the value is requested and the time limit has expired.

3. We added the ticker for nanosecond precision for when values are
eligible for a refresh.

4. Finally, we specified the loader to be used when calling the build method.

CacheBuilderSpec
The CacheBuilderSpec class can be used to create a CacheBuilder instance
by parsing a string that represents the settings for CacheBuilder, (with the
caveat that we lose compile time checking a malformed string that in turn will
lead to a runtime error). Here's an example of a valid string used to create a
CacheBuilderSpec instance:

String configString = "concurrencyLevel=10,refreshAfterWrite=5s"

Guava Cache

[80]

This would create the same CacheBuilder instance we saw in the final example
of CacheBuilder. For the options that specify the time (refreshAfterWrite,
expireAfterAccess, and so on), the integer for the interval is followed by either of
's', 'm', 'h', or 'd', corresponding to seconds, minutes, hours, or days. There are
no settings for milliseconds or nanoseconds. Once we have our configuration string,
we can create an instance of the CacheBuilderSpec class as follows:

CacheBuilderSpec spec = CacheBuilderSpec.parse(configString);

We can then use the instance of the CacheBuilderSpec class to create a
CacheBuilder instance:

CacheBuilder.from(spec);

Here we take the object of the CacheBuilderSpec class and call the static from
method on the CacheBuilder class and return a CacheBuilder instance set with
the properties from the formatted string. To add RemovalListener or to create
LoadingCache from the builder, we use the returned CacheBuilder instance and
make the appropriate method calls like we did before:

String spec =
"concurrencyLevel=10,expireAfterAccess=5m,softValues";
 CacheBuilderSpec cacheBuilderSpec =
CacheBuilderSpec.parse(spec);
 CacheBuilder cacheBuilder =
CacheBuilder.from(cacheBuilderSpec);
 cacheBuilder.ticker(Ticker.systemTicker())
 .removalListener(new TradeAccountRemovalListener())
 .build(new CacheLoader<String, TradeAccount>() {
 @Override
 public TradeAccount load(String key) throws
Exception {
 return
tradeAccountService.getTradeAccountById(key);
 }
 });

Here we add a Ticker instance and a RemovalListener instance and specify
CacheLoader to be used when calling the build method. Using a String literal for
CacheBuilderSpec is for demonstration purposes only. Usually, this string would
either be input from the command line or retrieved from a properties file.

Chapter 6

[81]

CacheLoader
We have already seen CacheLoader in action by this point. But there are a few
details we have not covered. The CacheLoader is an abstract class because of the
fact that the load method is abstract. There is also a loadAll method that takes an
Iterable object, but loadAll delegates this Iterable object to load for each item
contained in the Iterable object (unless we've overridden the loadAll method).
There are two static methods on the CacheLoader class that will allow us to leverage
some of the constructs we have learned about from Chapter 3, Functional Programming
with Guava. The first method is shown as follows:

CacheLoader<Key,value> cacheLoader =
CacheLoader.from(Function<Key,Value> func);

Here we can pass in a Function object that will transform an input object into
an output object. When used as an argument of the CacheLoader.from method, we
get a CacheLoader instance where the keys are the input objects to Function and the
resulting output objects are the values. Similarly, we also have the second method
shown as follows:

CacheLoader<Object,Value> cacheLoader =
CacheLoader.from(Supplier<Value> supplier);

In this preceding example, we are creating a CacheLoader instance from a Supplier
instance. It's worth noting here that any key passed to CacheLoader will result in the
Supplier.get() method being called. There is an implied assumption with both of
these methods that we are re-using existing Function or Supplier instances and not
creating new objects simply for the sake of creating CacheLoader.

CacheStats
Now that we've learned how to create a powerful caching mechanism, we are going
to want to gather statistics on how our cache is performing and how it's being used.
There is a very easy way to gather information on how our cache is performing.
Keep in mind that tracking cache operations incurs a performance penalty. To gather
statistics on our cache, we just need to specify that we want to record the statistics
when using CacheBuilder:

LoadingCache<String,TradeAccount> tradeAccountCache =
CacheBuilder.newBuilder()
 .recordStats()

Guava Cache

[82]

Here we are using a familiar pattern for constructing a LoadingCache instance. To
enable the recording of statistics, all we need to do is add a recordStats() call on
our builder. To read the performance statistics, all we need to do is call the stats()
method on our Cache/LoadingCache instance, and we will get a reference to a
CacheStats instance. Let's take the following example:

CacheStats cacheStats = cache.stats();

The following list is an overview of the type of information that can be obtained
from the CacheStats class:

• The average time spent loading new values
• The fraction of requests to the cache that were hits
• The fraction of requests to the cache that were misses
• The number of evictions made by the cache

There is more information available on cache performance; what's listed previously
is just a sample of the type of information available.

RemovalListener
We have seen in CacheBuilder examples of how we can add a RemovalListener
instance to our cache. As the name implies, RemovalListener is notified when
an entry is removed from the cache. As is the case with most listeners in Java, the
RemovalListener is an interface and has one method, onRemoval, that takes a
RemovalNotification object. RemovalListener is parameterized as follows:

RemovalListener<K,V>

Here, K is the type of the key we want to listen for and V is the type of the value
we want to be notified of when removed. If we wanted to know about any entry
being removed, we would simply use Object as the type parameter for both the
key and value.

RemovalNotification
A RemovalNotification instance is the object the RemovalListener object
receives when the removal of an entry is signaled. The RemovalNotification class
implements the Map.Entry interface, and as a result, we can access the actual key
and value objects that compose the entry in the cache. We should note that these
values could be null if the entry was removed due to garbage collection.

Chapter 6

[83]

We can also determine the reason for the removal by calling the getCause()
method on the RemovalNotification instance that returns a RemovalCause
enum. The possible values of the RemovalCause enum are as follows:

• COLLECTED: This value indicates that either the key or value were
garbage-collected

• EXPIRED: This value indicates that the entry's last-written or
last-accessed time limit has expired

• EXPLICIT: This value indicates that the user manually removed the entry
• REPLACED: This value indicates that the entry was not actually removed

but the value was replaced
• SIZE: This value indicates that the entry was removed because the size

of Cache approached or met the specified size limitation

If we need to perform any sort of operations when an entry is removed, it is best
to do so asynchronously.

RemovalListeners
The RemovalListeners class facilitates how we can asynchronously process the
removal notifications. To enable our RemovalListener instance to process any
work triggered by the removal of an entry, we simply use the RemovalListeners.
asynchronous method shown as follows:

RemovalListener<String,TradeAccount> myRemovalListener = new
RemovalListener<String, TradeAccount>() {
 @Override
 public void onRemoval(RemovalNotification<String,
TradeAccount> notification) {
 //Do something here
 }
 };
RemovalListener<String,TradeAccount> removalListener =
RemovalListeners.asynchronous(myRemovalListener,executorService);

Here we are taking previously constructed RemovalListener and
ExecutorService, and passing them as arguments to the asynchronous method.
We are returned a RemovalListener instance that will process removal notifications
asynchronously. This step should occur before we register our RemovalListener
object with the CacheBuilder instance.

Guava Cache

[84]

Summary
In this chapter, we learned about the powerful Guava caching mechanisms. We saw
how to create the simplest of caches by creating ConcurrentMap with the MapMaker
class. Next, we learned about the advanced features of Cache and very powerful
LoadingCache that will retrieve and cache values not present when requested. We
explored CacheBuilder and discussed the many configuration options available,
and how we can use CacheBuilder to configure the cache to suit our purposes.
We discussed CacheLoader and learned how this powerful class is the muscle
behind LoadingCache. We learned how to measure our cache performance through
CacheStats class. Finally, we covered how to receive notifications of removed
entries through the RemovalListener class. In the next chapter, we look at how to
implement event-based programming by utilizing the EventBus class from Guava.

The EventBus Class
When developing software, the idea of objects sharing information or collaborating
with each other is a must. The difficulty lies in ensuring that communication between
objects is done effectively, but not at the cost of having highly coupled components.
Objects are considered highly coupled when they have too much detail about
other components' responsibilities. When we have high coupling in an application,
maintenance becomes very challenging, as any change can have a rippling effect. To
help us cope with this software design issue, we have event-based programming.
In event-based programming, objects can either subscribe/listen for specific events,
or publish events to be consumed. In Java, we have had the idea of event listeners
for some time. An event listener is an object whose purpose is to be notified when a
specific event occurs. We saw an example of an event listener, the RemovalListener,
in Chapter 6, Guava Cache. In this chapter, we are going to discuss the Guava
EventBus class and how it facilitates the publishing and subscribing of events. The
EventBus class will allow us to achieve the level of collaboration we desire, while
doing so in a manner that results in virtually no coupling between objects. It's worth
noting that the EventBus is a lightweight, in-process publish/subscribe style of
communication, and is not meant for inter-process communication.

In this chapter, we are going to cover the following things:

• The EventBus and AsyncEventBus classes
• Subscribing to events and registering with EventBus to be notified of events
• Publishing events with EventBus
• Writing event handlers and choosing between coarse-grained or fine-grained

event handlers depending on our needs
• Using a dependency injection framework in conjunction with EventBus

The EventBus Class

[86]

We are going to cover several classes in this chapter that have
an @Beta annotation indicating that the functionality of the
class may be subject to change in future releases of Guava.

EventBus
The EventBus class (found in the com.google.common.eventbus package) is the
focal point for establishing the publish/subscribe-programming paradigm with
Guava. At a very high level, subscribers will register with EventBus to be notified
of particular events, and publishers will send events to EventBus for distribution
to interested subscribers. All the subscribers are notified serially, so it's important
that any code performed in the event-handling method executes quickly.

Creating an EventBus instance
Creating an EventBus instance is accomplished by merely making a call to
the EventBus constructor:

EventBus eventBus = new EventBus();

We could also provide an optional string argument to create an identifier
(for logging purposes) for EventBus:

EventBus eventBus = new EventBus(TradeAccountEvent.class.getName());

Subscribing to events
The following three steps are required by an object to receive notifications
from EventBus,:

1. The object needs to define a public method that accepts only one argument.
The argument should be of the event type for which the object is interested
in receiving notifications.

2. The method exposed for an event notification is annotated with an @
Subscribe annotation.

3. Finally, the object registers with an instance of EventBus, passing itself
as an argument to the EventBus.register method.

Chapter 7

[87]

Posting the events
To post an event, we need to pass an event object to the EventBus.post method.
EventBus will call the registered subscriber handler methods, taking arguments
that are assignable to the event object type. This is a very powerful concept because
interfaces, superclasses, and interfaces implemented by superclasses are included,
meaning we can easily make our event handlers as course- or fine-grained as we
want, simply by changing the type accepted by the event-handling method.

Defining handler methods
Methods used as event handlers must accept only one argument, the event object.
As mentioned before, EventBus will call event-handling methods serially, so it's
important that those methods complete quickly. If any extended processing needs to
be done as a result of receiving an event, it's best to run that code in a separate thread.

Concurrency
EventBus will not call the handler methods from multiple threads, unless the handler
method is marked with the @AllowConcurrentEvent annotation. By marking a
handler method with the @AllowConcurrentEvent annotation, we are asserting
that our handler method is thread-safe. Annotating a handler method with the @
AllowConcurrentEvent annotation by itself will not register a method with EventBus.

Now that we have defined how we can use EventBus, let's look at some examples.

Subscribe – An example
Let's assume we have defined the following TradeAccountEvent class as follows:

public class TradeAccountEvent {

 private double amount;
 private Date tradeExecutionTime;
 private TradeType tradeType;
 private TradeAccount tradeAccount;

 public TradeAccountEvent(TradeAccount account, double amount,
Date tradeExecutionTime, TradeType tradeType) {
 checkArgument(amount > 0.0, "Trade can't be less than
zero");

The EventBus Class

[88]

 this.amount = amount;
 this.tradeExecutionTime =
checkNotNull(tradeExecutionTime,"ExecutionTime can't be null");
 this.tradeAccount = checkNotNull(account,"Account can't be
null");
 this.tradeType = checkNotNull(tradeType,"TradeType can't
be null");
 }
//Details left out for clarity

So whenever a buy or sell transaction is executed, we will create an instance of the
TradeAccountEvent class. Now let's assume we have a need to audit the trades as
they are being executed, so we have the SimpleTradeAuditor class as follows:

public class SimpleTradeAuditor {

 private List<TradeAccountEvent> tradeEvents =
Lists.newArrayList();

 public SimpleTradeAuditor(EventBus eventBus){
 eventBus.register(this);
 }

 @Subscribe
 public void auditTrade(TradeAccountEvent tradeAccountEvent){
 tradeEvents.add(tradeAccountEvent);
 System.out.println("Received trade "+tradeAccountEvent);
 }
}

Let's quickly walk through what is happening here. In the constructor, we
are receiving an instance of an EventBus class and immediately register the
SimpleTradeAuditor class with the EventBus instance to receive notifications
on TradeAccountEvents. We have designated auditTrade as the event-handling
method by placing the @Subscribe annotation on the method. In this case, we are
simply adding the TradeAccountEvent object to a list and printing out to the console
acknowledgement that we received the trade.

Chapter 7

[89]

Event Publishing – An example
Now let's take a look at a simple event publishing example. For executing our trades,
we have the following class:

public class SimpleTradeExecutor {

 private EventBus eventBus;

 public SimpleTradeExecutor(EventBus eventBus) {
 this.eventBus = eventBus;
 }

 public void executeTrade(TradeAccount tradeAccount, double
amount, TradeType tradeType){
 TradeAccountEvent tradeAccountEvent =
processTrade(tradeAccount, amount, tradeType);
 eventBus.post(tradeAccountEvent);
 }

 private TradeAccountEvent processTrade(TradeAccount
tradeAccount, double amount, TradeType tradeType){
 Date executionTime = new Date();
 String message = String.format("Processed trade for %s of
amount %n type %s @
%s",tradeAccount,amount,tradeType,executionTime);
 TradeAccountEvent tradeAccountEvent = new TradeAccountEvent(tr
adeAccount,amount,executionTime,tradeType);
 System.out.println(message);
 return tradeAccountEvent;
 }
}

The EventBus Class

[90]

Like the SimpleTradeAuditor class, we are taking an instance of the EventBus class
in the SimpleTradeExecutor constructor. But unlike the SimpleTradeAuditor class,
we are storing a reference to the EventBus for later use. While this may seem obvious
to most, it is critical for the same instance to be passed to both classes. We will see
in future examples how to use multiple EventBus instances, but in this case, we are
using a single instance. Our SimpleTradeExecutor class has one public method,
executeTrade, which accepts all of the required information to process a trade in
our simple example. In this case, we call the processTrade method, passing along
the required information and printing to the console that our trade was executed,
then returning a TradeAccountEvent instance. Once the processTrade method
completes, we make a call to EventBus.post with the returned TradeAccountEvent
instance, which will notify any subscribers of the TradeAccountEvent object. If we
take a quick view of both our publishing and subscribing examples, we see that
although both classes participate in the sharing of required information, neither has
any knowledge of the other.

Finer-grained subscribing
We have just seen examples on publishing and subscribing using the EventBus class.
If we recall, EventBus publishes events based on the type accepted by the subscribed
method. This gives us some flexibility to send events to different subscribers by type.
For example, let's say we want to audit the buy and sell trades separately. First, let's
create two separate types of events:

public class SellEvent extends TradeAccountEvent {

 public SellEvent(TradeAccount tradeAccount, double amount, Date
tradExecutionTime) {
 super(tradeAccount, amount, tradExecutionTime, TradeType.
SELL);
 }
}

public class BuyEvent extends TradeAccountEvent {

 public BuyEvent(TradeAccount tradeAccount, double amount, Date
tradExecutionTime) {
 super(tradeAccount, amount, tradExecutionTime, TradeType.BUY);
 }
}

Chapter 7

[91]

Now we have created two discrete event classes, SellEvent and BuyEvent, both of
which extend the TradeAccountEvent class. To enable separate auditing, we will
first create a class for auditing SellEvent instances:

public class TradeSellAuditor {

 private List<SellEvent> sellEvents = Lists.newArrayList();

 public TradeSellAuditor(EventBus eventBus) {
 eventBus.register(this);
 }

 @Subscribe
 public void auditSell(SellEvent sellEvent){
 sellEvents.add(sellEvent);
 System.out.println("Received SellEvent "+sellEvent);
 }

 public List<SellEvent> getSellEvents() {
 return sellEvents;
 }
}

Here we see functionality that is very similar to the SimpleTradeAuditor class with
the exception that this class will only receive the SellEvent instances. Then we will
create a class for auditing only the BuyEvent instances:

public class TradeBuyAuditor {

 private List<BuyEvent> buyEvents = Lists.newArrayList();

 public TradeBuyAuditor(EventBus eventBus) {
 eventBus.register(this);
 }

 @Subscribe
 public void auditBuy(BuyEvent buyEvent){
 buyEvents.add(buyEvent);
 System.out.println("Received TradeBuyEvent "+buyEvent);
 }

 public List<BuyEvent> getBuyEvents() {
 return buyEvents;
 }
}

The EventBus Class

[92]

Now we just need to refactor our SimpleTradeExecutor class to create the correct
TradeAccountEvent instance class based on whether it's a buy or sell transaction:

public class BuySellTradeExecutor {
 … deatails left out for clarity same as SimpleTradeExecutor
//The executeTrade() method is unchanged from SimpleTradeExecutor

 private TradeAccountEvent processTrade(TradeAccount tradeAccount,
double amount, TradeType tradeType) {
 Date executionTime = new Date();
 String message = String.format("Processed trade for %s of
amount %n type %s @ %s", tradeAccount, amount, tradeType,
executionTime);
 TradeAccountEvent tradeAccountEvent;
 if (tradeType.equals(TradeType.BUY)) {
 tradeAccountEvent = new BuyEvent(tradeAccount, amount,
executionTime);

 } else {
 tradeAccountEvent = new SellEvent(tradeAccount,
amount, executionTime);
 }
 System.out.println(message);
 return tradeAccountEvent;
 }
}

Here we've created a new BuySellTradeExecutor class that behaves in the
exact same manner as our SimpleTradeExecutor class, with the exception that
depending on the type of transaction, we create either a BuyEvent or SellEvent
instance. However, the EventBus class is completely unaware of any of these
changes. We have registered different subscribers and we are posting different
events, but these changes are transparent to the EventBus instance. Also, take note
that we did not have to create separate classes for the notification of events. Our
SimpleTradeAuditor class would have continued to receive the events as they
occurred. If we wanted to do separate processing depending on the type of event,
we could simply add a check for the type of event. Finally, if needed, we could also
have a class that has multiple subscribe methods defined:

public class AllTradesAuditor {

 private List<BuyEvent> buyEvents = Lists.newArrayList();
 private List<SellEvent> sellEvents = Lists.newArrayList();

Chapter 7

[93]

 public AllTradesAuditor(EventBus eventBus) {
 eventBus.register(this);
 }

 @Subscribe
 public void auditSell(SellEvent sellEvent){
 sellEvents.add(sellEvent);
 System.out.println("Received TradeSellEvent "+sellEvent);
 }

 @Subscribe
 public void auditBuy(BuyEvent buyEvent){
 buyEvents.add(buyEvent);
 System.out.println("Received TradeBuyEvent "+buyEvent);
 }

}

Here we've created a class with two event-handling methods. The AllTradesAuditor
method will receive notifications about all trade events; it's just a matter of which
method gets called by EventBus depending on the type of event. Taken to an extreme,
we could create an event handling method that accepts a type of Object, as Object
is an actual class (the base class for all other objects in Java), and we could receive
notifications on any and all events processed by EventBus. Finally, there is nothing
preventing us from having more than one EventBus instance. If we were to refactor
the BuySellTradeExecutor class into two separate classes, we could inject a separate
EventBus instance into each class. Then it would be a matter of injecting the correct
EventBus instance into the auditing classes, and we could have complete event
publishing-subscribing independence. We won't show an example here, but the reader
should consult the sample code found in the bbejeck.guava.chapter7.config
package to see how that would work.

Unsubscribing to events
Just as we want to subscribe to events, it may be desirable at some point to turn
off the receiving of events. This is accomplished by passing the subscribed object
to the eventBus.unregister method. For example, if we know at some point that
we would want to stop processing events, we could add the following method to
our subscribing class:

public void unregister(){
 this.eventBus.unregister(this);
 }

The EventBus Class

[94]

Once this method is called, that particular instance will stop receiving events
for whatever it had previously registered for. Other instances that are registered
for the same event will continue to receive notifications.

AsyncEventBus
We stated earlier the importance of ensuring that our event-handling methods
keep the processing light due to the fact that the EventBus processes all events
in a serial fashion. However, we have another option with the AsyncEventBus
class. The AsyncEventBus class offers the exact same functionality as the EventBus,
but uses a provided java.util.concurrent.Executor instance to execute handler
methods asynchronously.

Creating an AsyncEventBus instance
We create an AsyncEventBus instance in a manner similar to the EventBus instance:

AsyncEventBus asyncEventBus = new AsyncEventBus(executorService);

Here we are creating an AsyncEventBus instance by providing a previously created
ExecutorService instance. We also have the option of providing a String identifier
in addition to the ExecutorService instance. AsyncEventBus is very helpful to use
in situations where we suspect the subscribers are performing heavy processing
when events are received.

DeadEvents
When EventBus receives a notification of an event through the post method,
and there are no registered subscribers, the event is wrapped in an instance of a
DeadEvent class. Having a class that subscribes for DeadEvent instances can be
very helpful when trying to ensure that all events have registered subscribers.
The DeadEvent class exposes a getEvent method that can be used to inspect the
original event that was undelivered. For example, we could provide a very simple
class, which is shown as follows:

public class DeadEventSubscriber {

 private static final Logger logger =
Logger.getLogger(DeadEventSubscriber.class);

 public DeadEventSubscriber(EventBus eventBus) {
 eventBus.register(this);

Chapter 7

[95]

 }

 @Subscribe
 public void handleUnsubscribedEvent(DeadEvent deadEvent){
 logger.warn("No subscribers for "+deadEvent.getEvent());
 }
}

Here we are simply registering for any DeadEvent instances and logging a warning
for the original unclaimed event.

Dependency injection
To ensure we have registered our subscribers and publishers with the same
instance of an EventBus class, using a dependency injection framework (Spring
or Guice) makes a lot of sense. In the following example, we will show how to
use the Spring Framework Java configuration with the SimpleTradeAuditor and
SimpleTradeExecutor classes. First, we need to make the following changes to
the SimpleTradeAuditor and SimpleTradeExecutor classes:

@Component
public class SimpleTradeExecutor {

 private EventBus eventBus;

 @Autowired
 public SimpleTradeExecutor(EventBus eventBus) {
 this.eventBus = checkNotNull(eventBus, "EventBus can't be
null");
 }

@Component
public class SimpleTradeAuditor {

 private List<TradeAccountEvent> tradeEvents =
Lists.newArrayList();

 @Autowired
 public SimpleTradeAuditor(EventBus eventBus){
 checkNotNull(eventBus,"EventBus can't be null");
 eventBus.register(this);
 }

The EventBus Class

[96]

Here we've simply added an @Component annotation at the class level for both
the classes. This is done to enable Spring to pick these classes as beans, which we
want to inject. In this case, we want to use constructor injection, so we added an @
Autowired annotation to the constructor for each class. Having the @Autowired
annotation tells Spring to inject an instance of an EventBus class into the constructor
for both objects. Finally, we have our configuration class that instructs the Spring
Framework where to look for components to wire up with the beans defined in the
configuration class.

@Configuration
@ComponentScan(basePackages = {"bbejeck.guava.chapter7.publisher",
 "bbejeck.guava.chapter7.subscriber"})
public class EventBusConfig {
 @Bean
 public EventBus eventBus() {
 return new EventBus();
 }
}

Here we have the @Configuration annotation, which identifies this class to
Spring as a Context that contains the beans to be created and injected if need be.
We defined the eventBus method that constructs and returns an instance of an
EventBus class, which is injected into other objects. In this case, since we placed
the @Autowired annotation on the constructors of the SimpleTradeAuditor and
SimpleTradeExecutor classes, Spring will inject the same EventBus instance into
both classes, which is exactly what we want to do. While a full discussion of how the
Spring Framework functions is beyond the scope of this book, it is worth noting that
Spring creates singletons by default, which is exactly what we want here. As we can
see, using a dependency injection framework can go a long way in ensuring that our
event-based system is configured properly. Consult the sample code found in the
bbejeck.guava.chapter7.config package for another example showing how to
configure more than one EventBus instance in an application.

Summary
In this chapter, we have covered how to use event-based programing to reduce
coupling in our code by using the Guava EventBus class. We covered how to create
an EventBus instance and register subscribers and publishers. We also explored
the powerful concept of using types to register what events we are interested in
receiving. We learned about the AsyncEventBus class, which allows us to dispatch
events asynchronously. We saw how we can use the DeadEvent class to ensure we
have subscribers for all of our events. Finally, we saw how we can use dependency
injection to ease the setup of our event-based system. In the next chapter, we will
take a look at working with files in Guava.

Working with Files
Reading from and writing to files is a core responsibility for programmers.
Surprisingly enough, while Java has a rich and robust library for working in I/O, it's
cumbersome to perform some basic tasks. While this has changed with the release of
Java 7, users of Java 6 are still out of luck. Fortunately, Guava does what we've come
to expect from this great library, giving us a set of tools to make working with I/O
much easier. Even though Java 7 has introduced several improvements that address
issues that Guava aimed to fix, we'll find that the tools provided to us make Guava
I/O still very useful. We are going to learn about the following things in this chapter:

• Using the Files class to help with common tasks such as moving or copying
files, or reading the lines of a file into a list of strings

• The Closer class, which gives us a very clean way of ensuring Closeable
instances are properly closed

• The ByteSource and CharSource classes, which are immutable suppliers
of input streams and readers

• The ByteSink and CharSink classes, which are immutable suppliers of
output streams and writers

• The CharStreams and ByteStreams classes, which offer static utility
methods for working with Readers, Writers, InputStreams, and
OutputStreams classes respectively

• The BaseEncoding class, which offers methods for encoding and
decoding byte sequences and ASCII characters

There are several classes we are going to cover in this chapter that
have an @Beta annotation indicating that the functionality of the
class may be subject to change in the future releases of Guava.

Working with Files

[98]

Copying a file
The Files class offers several helpful methods for working with the File objects.
For any Java developer, copying one file to another is a very challenging experience.
But let's consider how we could accomplish the same task in Guava, using the
Files class:

File original = new File("path/to/original");
 File copy = new File("path/to/copy");
Files.copy(original, copy);

Moving/renaming a File
Moving files in Java is equally as cumbersome as copying. With Guava, moving
a file is very easily achieved as shown in the following block of code:

public class GuavaMoveFileExample {

 public static void main(String[] args) {
 File original = new File("src/main/resources/copy.txt");
 File newFile = new File("src/main/resources/newFile.txt");
 try{
 Files.move(original, newFile);
 }catch (IOException e){
 e.printStackTrace();
 }
 }
}

In this example, we are taking the copy.txt file and re-naming it to newFile.txt.
As we can see, it's as simple as calling the Files.move method.

Working with files as strings
There are times when we need to manipulate or work with files as strings.
The Files class has methods for reading a file into a list of strings, returning
the first line of a file as a string, and reading the contents of an entire file into
a string. In our first example, we are going to show how to read a file into a list
of strings by calling the Files.readLines method:

@Test
 public void readFileIntoListOfStringsTest() throws Exception{
 File file = new File("src/main/resources/lines.txt");

Chapter 8

[99]

 List<String> expectedLines = Lists.newArrayList("The quick
brown","fox jumps over","the lazy dog");
 List<String> readLines = Files.readLines(file,
Charsets.UTF_8);
 assertThat(expectedLines,is(readLines));
 }

For this example, we are using a unit test to confirm that reading in a simple file
with three lines gives us the expected results. All lines in the list have the terminal
newline character stripped off, but any other white space is left intact. There is
another version of Files.readLines method that takes the LineProcessor instance
as an additional argument. Each line is fed to the LineProcessor.processLine
method, which returns a boolean. Lines from the file will continue to be streamed
to the LineProcessor instance until the file is exhausted or the LineProcessor.
processLine method returns false. Consider, we have the following CSV file
that contains information about books:

"Savage, Tom",Being A Great Cook,Acme Publishers,ISBN-
123456,29.99,1
"Smith, Jeff",Art is Fun,Acme Publishers,ISBN-456789,19.99,2
"Vandeley, Art",Be an Architect,Acme Publishers,ISBN-
234567,49.99,3
"Jones, Fred",History of Football,Acme Publishers,ISBN-
345678,24.99,4
"Timpton, Patty",Gardening My Way,Acme Publishers,ISBN-
4567891,34.99,5

We want to extract the title of the book from each row. To accomplish this task we
have written the following implementation of the LineProcessor interface:

public class ToListLineProcessor implements
LineProcessor<List<String>>{

 private static final Splitter splitter = Splitter.on(",");
 private List<String> bookTitles = Lists.newArrayList();
 private static final int TITLE_INDEX = 1;

 @Override
 public List<String> getResult() {
 return bookTitles;
 }

 @Override
 @Override

Working with Files

[100]

 public boolean processLine(String line) throws IOException {
 bookTitles.add(Iterables.get(splitter.split(line),TITLE_
INDEX));
 return true;
 }

Here we are going to split each line on commas, take the title of the book, which is
the second item and add it to List<String>. Notice we are using the Iterables
class again, this time the static Iterables.get method, to retrieve the book title.
We always return true, as we want to collect all the book titles from the file. Here's a
unit test that confirms our LineProcessor instance extracts the correct information:

@Test
 public void readLinesWithProcessor() throws Exception {
 File file = new File("src/main/resources/books.csv");
 List<String> expectedLines = Lists.newArrayList("Being A Great
Cook","Art is Fun","Be an Architect","History of Football","Gardening
My Way");
 List<String> readLines = Files.readLines(file, Charsets.UTF_8,
new ToListLineProcessor());
 assertThat(expectedLines,is(readLines));
 }

In this example, we simply took all the input, but we could have just as easily only
taken n number of lines or filtered the data on some criteria.

Hashing a file
Generating the hash code for a file is another example of a very simple task that
seems to require too much boilerplate code when done in Java. Fortunately, the
Files class has a hash method, as shown in the following block of code:

public class HashFileExample {

 public static void main(String[] args) throws IOException {
 File file = new File("src/main/resources/sampleTextFileOne.
txt");
 HashCode hashCode = Files.hash(file, Hashing.md5());
 System.out.println(hashCode);
 }
}

In the preceding example, to use the Files.hash method, we supply a File
object and a HashFunction instance; in this case, we are using a hash function that
implements the MD5 algorithm, and the method returns a HashCode object. Hash
functions will be covered in the next chapter.

Chapter 8

[101]

Writing to files
When working with input/output streams, there are several steps we have
to follow, which are:

1. Opening the input/output stream.
2. Reading bytes into or out of the stream.
3. When done, ensure all resources are properly closed in a finally block.

When we have to repeat this process, over and over again, it is error prone and
makes the code less clear and less maintainable. The Files class offers convenience
methods for writing/appending to a file or reading the contents of a file into a byte
array. Most of these become one-liners with the opening and closing of resources
being taken care of for us.

Writing and appending
An example of writing and appending to a file is shown as follows:

@Test
 public void appendingWritingToFileTest() throws IOException {
 File file = new File("src/test/resources/quote.txt");
 file.deleteOnExit();

 String hamletQuoteStart = "To be, or not to be";
 Files.write(hamletQuoteStart,file, Charsets.UTF_8);
assertThat(Files.toString(file,Charsets.UTF_8),is(hamletQuoteStart));

 String hamletQuoteEnd = ",that is the question";
 Files.append(hamletQuoteEnd,file,Charsets.UTF_8);
 assertThat(Files.toString(file, Charsets.UTF_8),
is(hamletQuoteStart + hamletQuoteEnd));
 String overwrite = "Overwriting the file";
 Files.write(overwrite, file, Charsets.UTF_8);
 assertThat(Files.toString(file, Charsets.UTF_8),
is(overwrite));
 }

In this example, we have a unit test that does the following things:

1. Creating a file for testing, and ensuring the file is deleted when the JVM exits.
2. We use the File.write method to write a string to the file and confirm the

write was successful.

Working with Files

[102]

3. We then use the File.append method to add another string and again confirm
the expected result that the file contains the concatenation of our strings.

4. Finally, we use the Files.write method again to overwrite the file
and confirm that we have indeed overwritten the file.

While this is certainly a simple example, notice that we wrote to a file three
times and we never once had to open or close any resources. As a result, our
code becomes much easier to read and more importantly, less error prone.

InputSupplier and OutputSupplier
Guava has InputSupplier and OutputSupplier interfaces that are used as
suppliers of InputStreams/Readers or OutputStreams/Writers. We'll see
in the following section how these interfaces benefit us, as Guava will typically
open, flush, and close the underlying resources when these interfaces are used.

Sources and Sinks
Guava I/O has the notion of Sources and Sinks for reading and writing files,
respectively. Sources and Sinks are not streams', readers', or writers' objects
themselves, but are also providers for the same. Source and Sink objects can
be used in two ways:

• We can retrieve the underlying stream from the provider. Each time the
provider returns a stream, it is a completely new instance, and independent
from any others that may have been returned. Callers retrieving the
underlying stream objects are responsible for closing the stream.

• There are basic convenience methods for performing basic operations we
would expect, such as reading from a stream or writing to a stream. When
performing reads and writes through the Sinks or Sources, the opening and
closing of the streams are handled for us. Each operation involves opening
and closing a new stream.

There are two types of Sources: ByteSource and CharsSource. Likewise, there are
two types of Sinks: ByteSink and CharSink. The respective Source and Sink classes
offer similar functionality, the differences in the methods are due to the fact that we
are either working with characters or raw bytes. The Files class offers several of
the methods offered by the ByteSink and CharSink classes that work on files. We
can create a ByteSource, ByteSink, CharSource, or CharSink instance from static
factory methods on the Files class, or the ByteStreams and CharStreams classes.
In our examples, we are going to focus on ByteSource and ByteSink objects, but the
CharSource and CharSink objects work in a similar fashion, just with characters.

Chapter 8

[103]

ByteSource
A ByteSource class represents a readable source of bytes. Typically, we would
expect the underlying source of the bytes to be from a file, but it could be from
a byte array.

We can create ByteSource from a file object by using a static method from
the Files class:

@Test
 public void createByteSourceFromFileTest() throws Exception {
 File f1 = new File("src/main/resources/sample.pdf");
 byteSource = Files.asByteSource(f1);
 byte[] readBytes = byteSource.read();
 assertThat(readBytes,is(Files.toByteArray(f1)));
 }

In this example, we are creating ByteSource from a file using the Files.
asByteSource method. Next, we are demonstrating how we can read the contents
of ByteSource into a byte array by calling the read method. Finally, we are asserting
that the byte array returned from the read method is the same as the byte array
returned from the Files.toByteArray method.

ByteSink
A ByteSink class represents a writable source of bytes. We can write the bytes
to a file or the destination could be another byte array. To create ByteSink from
a file, we would do the following:

@Test
 public void testCreateFileByteSink() throws Exception {
 File dest = new File("src/test/resources/byteSink.pdf");
 dest.deleteOnExit();
 byteSink = Files.asByteSink(dest);
 File file = new File("src/main/resources/sample.pdf");
 byteSink.write(Files.toByteArray(file));
 assertThat(Files.toByteArray(dest),is(Files.
toByteArray(file)));
 }

Here we are creating a file object, then calling the static Files.asByteSink method
with the newly created file object as an argument. We then call the write method
writing the bytes to their ultimate destination. Finally, we are asserting that the file
contains our expected content. There is also a method on the ByteSink class where
we can write to an OutputStream object.

Working with Files

[104]

Copying from a ByteSource class to a
ByteSink class
Now we will tie the ByteSource and ByteSink classes together by showing
an example of copying the underlying bytes from the ByteSource instance to
a ByteSink instance. While this might seem obvious, there are some powerful
concepts at work here. First, we are dealing at an abstract level with ByteSource
and ByteSink instances; we really don't need to know the original sources for each.
Second, the entire opening and closing of resources is handled for us.

@Test
 public void copyToByteSinkTest() throws Exception {
 File dest = new
File("src/test/resources/sampleCompany.pdf");
 dest.deleteOnExit();
 File source = new File("src/main/resources/sample.pdf");
 ByteSource byteSource = Files.asByteSource(source);
 ByteSink byteSink = Files.asByteSink(dest);
 byteSource.copyTo(byteSink);
 assertThat(Files.toByteArray(dest),
is(Files.toByteArray(source)));
 }

Here we are creating a ByteSource instance and a ByteSink instance using the
familiar static methods from the Files class. We are then calling the ByteSource.
copyTo method writing the bytes to the byteSink object. Then we verify that the
contents of our new file match the contents of our source file. The ByteSink class
also has a copyTo() method that takes OutputStream as the destination to copy
the bytes to.

ByteStreams and CharStreams
ByteStreams is a utility class for working with InputStream and OutputStream
instances, and the CharStreams class is a utility class for working with Reader
and Writer instances. Several of the methods offered by the ByteStreams and
CharStreams classes that operate directly on files are also offered in the Files class.
Several of the methods operate by copying the entire contents of a stream or reader
to another OutputSupplier, OutputStream, or Writer instance. There are too many
methods to go into detail here, so we will instead go over a couple of interesting
methods found in each class.

Chapter 8

[105]

Limiting the size of InputStreams
The ByteSteams.limit method takes InputStream and a long value and returns
a wrapped InputStream that will only read the number of bytes equal to the long
value given. Let's take a look at an example:

@Test
 public void limitByteStreamTest() throws Exception {
 File binaryFile = new
File("src/main/resources/sample.pdf");
 BufferedInputStream inputStream = new
BufferedInputStream(new FileInputStream(binaryFile));
 InputStream limitedInputStream =
ByteStreams.limit(inputStream,10);
 assertThat(limitedInputStream.available(),is(10));
 assertThat(inputStream.available(),is(218882));
 }

In this example, we are creating InputStream for one of our sample files, sample.
pdf. We are then creating InputStream that will be limited to 10 bytes from the
underlying stream via the ByteStreams.limit method. We then verify whether
our new limited InputStream is correct by asserting the number of available bytes
to read is 10, and we also assert that the size of the original stream is much higher.

Joining CharStreams
The CharStreams.join method takes multiple InputSupplier instances and joins
them so that they logically appear as one InputSupplier instance, and writes out
their contents to an OutputSupplier instance:

@Test
 public void joinTest() throws Exception {
 File f1 = new
File("src/main/resources/sampleTextFileOne.txt");
 File f2 = new
File("src/main/resources/sampleTextFileTwo.txt");
 File f3 = new File("src/main/resources/lines.txt");
 File joinedOutput = new
File("src/test/resources/joined.txt");
 joinedOutput.deleteOnExit();

 List<InputSupplier<InputStreamReader>> inputSuppliers() =
getInputSuppliers()(f1,f2,f3);

Working with Files

[106]

 InputSupplier<Reader> joinedSupplier =
CharStreams.join(inputSuppliers());
 OutputSupplier<OutputStreamWriter> outputSupplier =
Files.newWriterSupplier(joinedOutput, Charsets.UTF_8);
 String expectedOutputString = joinFiles(f1,f2,f3);

 CharStreams.copy(joinedSupplier,outputSupplier);
 String joinedOutputString = joinFiles(joinedOutput);
 assertThat(joinedOutputString,is(expectedOutputString));
 }
private String joinFiles(File ...files) throws IOException {
 StringBuilder builder = new StringBuilder();
 for (File file : files) {
 builder.append(Files.toString(file,Charsets.UTF_8));
 }
 return builder.toString();
 }

 private List<InputSupplier<InputStreamReader>>
getInputSuppliers()(File ...files){
 List<InputSupplier<InputStreamReader>> list =
Lists.newArrayList();
 for (File file : files) {
 list.add(Files.newReaderSupplier(file,Charsets.UTF_8));
 }
 return list;
 }

This is a big example, so let's step through what we're doing here:

1. We are creating four File objects, three that are our source files that
need to be joined, and an output file.

2. We use a private utility method on our test, getInputSuppliers(),
that uses the Files.newReaderSupplier static factory method to
create InputSupplier objects for each of our source files.

3. We then create InputSupplier that joins our list of InputSupplier
instances into one logical InputSupplier.

4. We create OutputSupplier by calling the Files.newWriterSupplier
factory method using the fourth file object we created in step one.

5. We use another private helper method, joinFiles, that calls the Files.
toString method on each of the source files to create the expected value
for our test.

Chapter 8

[107]

6. We call the CharStreams.copy method that will write the contents of
each of the underlying InputSuppliers() to OutputSupplier.

7. We verify whether the destination file contains the same content as the
three original source files.

Closer
The Closer class in Guava is used to ensure that all the registered Closeable
objects are properly closed when the Closer.close method is called. The Closer
class emulates the behavior found with Java 7's try-with-resources idiom, but can
be used in a Java 6 environment. Using the Closer class is straightforward and is
done in the following manner:

public class CloserExample {

 public static void main(String[] args) throws IOException {
 Closer closer = Closer.create();
 try {
 File destination = new File("src/main/resources/copy.
txt");
 destination.deleteOnExit();

 BufferedReader reader = new BufferedReader(new
FileReader("src/main/resources/sampleTextFileOne.txt"));
 BufferedWriter writer = new BufferedWriter(new
FileWriter(destination));
 closer.register(reader);
 closer.register(writer);

 String line;
 while((line = reader.readLine())!=null){
 writer.write(line);
 }

 } catch (Throwable t) {
 throw closer.rethrow(t);
 } finally {
 closer.close();
 }
 }
}

Working with Files

[108]

In this example, we are simply setting up to copy a text file. First, we create an instance
of a Closer class. Then we create BufferedReader and BufferedWriter, and then
register those objects with the previously created Closer instance. We should mention
here that all of the methods that use the InputSupplier and OutputSupplier
instances use the Closer class to manage the closing of the underlying I/O resources,
and in the opinion of the writer, it's better to use the Sources and Sinks objects covered
previously than raw I/O streams, readers, or writers.

BaseEncoding
When dealing with binary data, we sometimes have a need to convert the bytes
representing the data into printable ASCII characters. Of course, we also need to be
able to convert the encoded bytes back into their raw decoded form. BaseEncoding
is an abstract class that contains static factory methods for creating instances of
different encoding schemes. In its simplest form, we can use the BaseEncoding class
as follows:

@Test
 public void encodeDecodeTest() throws Exception {
 File file = new File("src/main/resources/sample.pdf");
 byte[] bytes = Files.toByteArray(file);
 BaseEncoding baseEncoding = BaseEncoding.base64();
 String encoded = baseEncoding.encode(bytes);
 assertThat(Pattern.matches("[A-Za-z0-
9+/=]+",encoded),is(true));
 assertThat(baseEncoding.decode(encoded),is(bytes));
 }

Here we are taking a binary file (a PDF document) and encoding the bytes to a
base64 encoded string. We assert the string is composed entirely of ASCII characters.
Then we convert the encoded string back to bytes and assert those are equal to the
bytes we started with. But the BaseEncoding class gives us much more flexibility
and power than simply encoding and decoding byte arrays. We can wrap the
OutputSuplier, ByteSink, and Writer instances so that the bytes are encoded as
they are written. Conversely, we can also wrap the IntputStream, ByteSource, and
Reader instances that decode strings on the fly. Let's look at the following example:

@Test
 public void encodeByteSinkTest() throws Exception{
 File file = new File("src/main/resources/sample.pdf");
 File encodedFile = new
File("src/main/resources/encoded.txt");

Chapter 8

[109]

 encodedFile.deleteOnExit();
 CharSink charSink = Files.asCharSink(encodedFile,
Charsets.UTF_8);

 BaseEncoding baseEncoding = BaseEncoding.base64();
 ByteSink byteSink = baseEncoding.encodingSink(charSink);
 ByteSource byteSource = Files.asByteSource(file);
 byteSource.copyTo(byteSink);

 String encodedBytes = baseEncoding.encode(byteSource.read());
 assertThat(encodedBytes,is(Files.
toString(encodedFile,Charsets.UTF
_8)));
 }

In this example, we are creating two file objects, one representing our binary file and
the other, the location where we are going to copy the original file. We next create a
CharSink instance with our destination file object. Next, we create a BaseEncoding
instance that will encode/decode using the base64 algorithm. We use the
BaseEncoding instance to wrap our previously constructed CharSink in ByteSink
so that bytes are automatically encoded as they are written. We are then creating
ByteSource from our destination file and copying the bytes to our ByteSink. We
then assert that the encoded bytes from our original file match the destination file
when converted to a string.

Summary
We learned how Guava handles the opening and closing of our I/O resources
when using InputSupplier and OutputSupplier. We also saw how to use the
ByteSource, ByteSink, CharSource, and CharSink classes. Finally, we learned
about the BaseEncoding class for converting binary data into text. In our next
chapter, we wrap things up by covering the Hashing class and BloomFilter data
structure, and avoiding null pointers with the Optional class.

Odds and Ends
We've reached the last chapter in this book but there is still so much to cover.
While it's impossible to cover all of Guava in a book of this size, we've tried our
best. This chapter is going to cover other useful tools from Guava that did not require
an entire chapter by themselves. Also the ideas presented in this chapter might not
need to be used everyday, but when you have the need, they can be indispensable.
We are going to learn about the following things in this chapter:

• The Hashing class that contains static-utility methods for obtaining
HashFunction instances

• The BloomFilter data structure that can be used to tell if an element is
not present in a set. A BloomFilter data structure has the unique property
that it can give a false positive about an element's presence but not a false
negative about its absence

• The Optional class that gives us an alternative to using null references
• The Throwables class with static-utility methods for working with

Throwable instances

Creating proper hash functions
Hash functions are fundamental in programming and are used for establishing
identity and checking for duplicates. Also, they are essential for proper use of Java
collections. Hash functions work by taking data of various lengths and mapping
them to numbers. Since we are trying to map arbitrary data to numbers, it is essential
that our hash function should be very resistant to collisions. In other words, we want
to avoid generating the same numbers for different data. Needless to say, writing
a good hash function is best left to the experts. Luckily, with Guava, we don't have
to write our own hashing functions. The Hashing class provides static methods for
creating HashFunction instances and there are a few types to be aware of.

Odds and Ends

[112]

Checksum hash functions
Guava provides two HashFunction classes that implement well-known checksum
algorithms, Adler-32 and CRC-32. To create an instance of either HashFunction,
we would do the following:

 HashFunction adler32 = Hashing.adler32();
 HashFunction crc32 = Hashing.crc32();

Here we are simply making a static method call the Hashing class to retrieve
the desired HashFunction implementation.

General hash functions
Next we have what we'll call general hash functions. General hash functions
are noncryptographic and are well suited to be used for hash-based lookup tasks.
The first of these is the murmur hash, developed by Austin Appleby in 2008. The
other general hash function is called goodFastHash. Let's take a look at creating
the general hash functions:

HashFunction gfh = Hashing.goodFastHash(128);
HashFunction murmur3_32 = Hashing.murmur3_32();
HashFunction murmur3_128 = Hashing.murmur3_128();

The goodFastHash method returns the hash codes of a specified minimum number
of bits in length, which is 128 in this case. Since there are 8 bits in a byte, the
goodFastHash method call here would produce hash codes with a minimum length
of 16 bytes (128 divided by 8). Next, we are creating two instances of the murmur
hash. The first murmur hash instance is an implementation of the 32-bit murmur3_32
algorithm. The second murmur hash instance implements the 128-bit murmur3_128
hash algorithm.

In the Guava documentation, the goodFastHash method has
a warning that the implementation is subject to change.

Chapter 9

[113]

Cryptographic hash functions
While a full description of a cryptographic hash function is beyond the scope of this
book, we can say that cryptographic hash functions are used for information security.
Generally speaking, cryptographic hash functions have the following properties:

• Any small change in the data results in a large change in the resulting
hash code

• It is computationally infeasible that an attacker would be able to reverse
engineer the hash code, that is, generate the message for a given hash code

There are three variants of cryptographic hash functions offered by Guava shown
as follows:

 HashFunction sha1 = Hashing.sha1();
 HashFunction sha256 = Hashing.sha256();
 HashFunction sha512 = Hashing.sha512();

The three hash functions we just saw implement the sha-1, sha-256, and sha-512
hashing algorithms.

BloomFilter
Bloomfilters are a unique data structure used to indicate whether an element is
contained in a set. What makes BloomFilter interesting is that it will indicate
whether an element is absolutely not contained or may be contained in a set. This
property of never having a false negative makes BloomFilter a great candidate
for use as a guard condition to help prevent performing unnecessary or expensive
operations, such as disk retrievals.

BloomFilter in a nutshell
Bloomfilter are essentially bit vectors. At a high level, Bloomfilter work in
the following manner:

1. Add an element to the filter.
2. Hash it a few times and then set the bits to 1, where the index matches

the results of the hash.

Odds and Ends

[114]

When testing whether an element is in the set, you follow the same hashing
procedure and check whether the bits are set to 1 or 0. This process is about
how BloomFilter can guarantee that an element is not present. If the bits aren't set,
it's simply impossible for the element to be in the set. However, a positive answer
means the element is in the set or a hashing collision has occurred. Before we cover
creating and using Bloom filters in Guava, we need to talk about how we get the
bytes from objects read into BloomFilter for hashing.

Funnels and PrimitiveSinks
The Funnel interface accepts objects of a certain type and sends data to a
PrimitiveSink instance. PrimitiveSink is an object that receives primitive
values. A PrimitiveSink instance will extract the bytes needed for hashing.
A Funnel interface is used by BloomFilter to extract the bytes from the items
placed in the BloomFilter data structure for hashing. Let's look at an example:

public enum BookFunnel implements Funnel<Book> {
 //This is the single enum value
 FUNNEL;
 public void funnel(Book from, PrimitiveSink into) {
 into.putBytes(from.getIsbn().getBytes(Charsets.UTF_8))
 .putDouble(from.getPrice());
 }
}

Here we are creating a simple Funnel instance that expects to receive Book instances.
Note that we are implementing our Funnel as an enum, which helps maintain
the serialization of BloomFilter, which also needs the Funnel instance to be
serializable. The ISBN property (as a byte array) from Book and Price (double data
types) are put into the PrimitiveSink instance and will be used to create the hash
code representing the Book instance that is passed in.

Creating a BloomFilter instance
Now that we've seen how to create a Funnel instance, we are ready to create our
BloomFilter instance:

BloomFilter<Book> bloomFilter = BloomFilter.create(new
BookFunnel(), 5);

Chapter 9

[115]

In this example, we are creating a BloomFilter instance by calling the static factory's
create method, passing in a Funnel instance and an integer, which represents the
number of expected inserts into BloomFilter. If the number of expected insertions is
greatly exceeded, the number of false positives will rise sharply. Let's take a look at a
sample BloomFilter instance:

public class BloomFilterExample {

 public static void main(String[] args) throws Exception {
 File booksPipeDelimited = new
File("src/main/resources/books.data");

 List<Book> books = Files.readLines(booksPipeDelimited,
Charsets.UTF_8, new LineProcessor<List<Book>>() {
Splitter splitter = Splitter.on('|');
 List<Book> books = Lists.newArrayList();
 Book.Builder builder = new Book.Builder();

 public boolean processLine(String line) throws
IOException {
 List<String> parts =
Lists.newArrayList(splitter.split(line));
 builder.author(parts.get(0))
 .title(parts.get(1))
 .publisher(parts.get(2))
 .isbn(parts.get(3))
 .price(Double.parseDouble(parts.get(4)));
 books.add(builder.build());
 return true;
 }

 @Override
 public List<Book> getResult() {
 return books;
 }
 });

 BloomFilter<Book> bloomFilter = BloomFilter.create(new
BookFunnel(), 5);

Odds and Ends

[116]

 for (Book book : books) {
 bloomFilter.put(book);
 }

 Book newBook = new Book.Builder().title("Mountain
Climbing").build();
 Book book1 = books.get(0);
 System.out.println("book "+book1.getTitle()+" contained
"+bloomFilter.mightContain(book1));
 System.out.println("book "+newBook.getTitle()+" contained
"+bloomFilter.mightContain(newBook));
 }

Following are the results of our test:

Book [Being A Great Cook] contained true
Book [Mountain Climbing] contained false

In this example, we are reading in a pipe-delimited file and using the Files.
readLines method in conjunction with a LineProcessor callback to convert
each line from the file into a Book object. Each Book instance is added to a list and
when the file has been fully processed, the list of books is returned. We then create
a BloomFilter instance with the BookFunnel enum with an expected number of
insertions of 5. We then add all of the books from the list into BloomFilter. Finally,
we test BloomFilter by calling mightContain with a book that was added to
BloomFilter and one that was not.

While we may not need to use BloomFilter on a daily basis, it's a very useful
tool to have in our arsenal.

Optional
Dealing with null objects is painful. It's probably safe to say that many errors have
been caused by assuming that objects returned by a method could not possibly
be null, only to be unpleasantly surprised. To help with this situation, Guava has
the Optional class. Optional is an immutable object that may or may not contain
a reference to another object. If the Optional class contains the instance, it is
considered present, and if it does not contain the instance, it is considered absent.
A good use case for the Optional class is to have methods that return values which
return Optional instead. That way we are forcing clients to consider the fact that the
returned value may not be present, and we should take action accordingly.

Chapter 9

[117]

Creating an Optional instance
The Optional class is abstract, and while we could extend Optional directly,
there are static methods we can use to create an Optional instance. For example:

1. Optional.absent() returns an empty Optional instance.
2. Optional.of(T ref) returns an Optional instance that contains an

object of type T.
3. In Optional.fromNullable(T ref), if ref is not null, it returns

an Optional instance containing the reference, otherwise, an empty
Optional instance.

4. In Optional.or(Supplier<T> supplier), if the reference is present then
the reference is returned, otherwise, the result of Supplier.get is returned.

Let's take a look at a couple of simple examples:

@Test
 public void testOptionalOfInstance(){
 TradeAccount tradeAccount = new
TradeAccount.Builder().build();
 Optional<TradeAccount> tradeAccountOptional =
Optional.of(tradeAccount);
 assertThat(tradeAccountOptional.isPresent(),is(true));
 }

In the preceding unit test example, we are using the static Optional.of method
that returns an Optional instance wrapping the given object. We confirm that our
instance is available by asserting that the isPresent method returns true. Probably
of more interest is using the Optional.fromNullable method shown as follows:

@Test(expected = IllegalStateException.class)
 public void testOptionalNull(){
 Optional<TradeAccount> tradeAccountOptional =
Optional.fromNullable(null);
 assertThat(tradeAccountOptional.isPresent(),is(false));
 tradeAccountOptional.get();
 }

Odds and Ends

[118]

In this unit test example, we are creating an Optional instance using the
fromNullable static method. In this case, we are also returned an Optional
instance, but this time we assert that the call to isPresent method returns false.
Furthermore, we assert that an attempt to retrieve the wrapped object by calling
get throws IllegalStateExeption due to the fact that there is no instance present.
Optional.fromNullable is a great method for wrapping objects before returning
them to callers. The true importance of the Optional class is that it signals a value
is not guaranteed to be present, and it forces us to deal with that fact.

Throwables
The Throwables class contains static-utility methods for working with instances
of java.lang.Throwable. Errors and exceptions in Java programs are inevitable.
Sometimes it would be nice to have a utility to help with navigating large stack traces.
The Throwables class offers us such help. We are going to look at two methods in
particular, Throwables.getCausalChain and Throwables.getRootCause.

Getting the chain of Throwables
The Throwables.getCausalChain method returns a list of Throwable instances
starting with the top level Throwable instance followed by the nested Throwable
instances in the chain. This is best illustrated with an example:

@Test
 public void testGetCausalChain() {
 ExecutorService executor =
Executors.newSingleThreadExecutor();
 List<Throwable> throwables = null;
 Callable<FileInputStream> fileCallable = new
Callable<FileInputStream>() {
 @Override
 public FileInputStream call() throws Exception {
 return new FileInputStream("Bogus file");
 }
 };
 Future<FileInputStream> fisFuture =
executor.submit(fileCallable);
 try {
 fisFuture.get();

Chapter 9

[119]

 } catch (Exception e) {
 throwables = Throwables.getCausalChain(e);
 }
 assertThat(throwables.get(0).getClass().
isAssignableFrom(Execution
Exception.class),is(true));
 assertThat(throwables.get(1).getClass().
isAssignableFrom(FileNotFo
undException.class),is(true));
 executor.shutdownNow();
 }

In this example, we are creating a Callable instance that is meant to
return a FileInputStream object, but we are purposely going to cause a
FileNotFoundException. We then submit our Callable instance to an
ExecutorService and are returned with a Future reference. When we call
the Future.get method, we fully expect an exception to be thrown, and we
get the causal chain of the exception hierarchy as a list from the Throwables.
getCausalChain method. Finally, we assert that the first Throwable
instance in the list is an ExecutionException exception and the second is
FileNotFoundException. With this list of the Throwable instances, we could
conceivably filter the list looking for only the exceptions we want to examine.

Obtaining the Root Cause Throwable
The Throwables.getRootCause method takes a Throwable instance and returns
the root cause of the exception hierarchy. Here's an example:

@Test
 public void testGetRootCause() throws Exception {
 ExecutorService executor =
Executors.newSingleThreadExecutor();
 Throwable cause = null;
 final String nullString = null;
 Callable<String> stringCallable = new Callable<String>() {
 @Override
 public String call() throws Exception {
 return nullString.substring(0,2);
 }
 };

Odds and Ends

[120]

 Future<String> stringFuture=
executor.submit(stringCallable);
 try {
 stringFuture.get();
 } catch (Exception e) {
 cause = Throwables.getRootCause(e);
 }
 assertThat(cause.getClass().isAssignableFrom(NullPointerExcep
tion.
class),is(true));
 executor.shutdownNow();
 }

Again we are using a Callable instance that will intentionally throw an exception,
this time a NullPointerException. When we catch the exception thrown from
calling the get method on our returned Future, stringFuture, we then call the
Throwables.getRootCause method, and assign the returned innermost Throwable
instance to our cause variable. We then assert that the root cause was indeed a
NullPointerException. While these methods won't replace the practice of sifting
through stack traces in log files, they give us the opportunity to save potentially
valuable information we could use later.

Summary
In this chapter, we have covered some useful classes, which will probably not be used
on an everyday basis but will serve us well when needed. First, we learned about
the hash functions and the hashing utilities provided. Then we saw how those hash
functions tie into a useful data structure called BloomFilter. We also learned about
the Optional class, which can be useful in making our code more robust by avoiding
unexpected null values. Finally, we learned about the Throwables class, which
contains some useful methods for navigating exceptions thrown from our programs.

Index
Symbols
@AllowConcurrentEvent annotation 87
@Autowired annotation 96
@Beta annotation 60, 73
@Component annotation 96
@Subscribe annotation 86

A
acquire method 70
addToList method 61
apply method 28, 32
arbitrary comparable objects

Ranges with 53, 54
ArrayListMultimap

about 46
creating, methods for 46-48

Ascii class method 17
assertThat statements 41
AsyncEventBus

about 94
instance, creating 94

AsyncFunction class 59, 67
AsyncFunction interface 69

about 68
applying 69

asynchronous method 83

B
BaseEncoding 108, 109
BaseEncoding class 97
beans 96
BiMap

about 49

BiMap.forcePut method, using 49, 50
BiMap.inverse method, using 50

BiMap.forcePut method
using 49, 50

BiMap.inverse method
using 50

BloomFilter
about 113
creating 114-116
Funnel interface 114
in nutshell 113
PrimitiveSinks 114

BloomFilter instance 111
book object 76
BuySellTradeExecutor class 92
ByteSink class

about 97, 103, 104
ByteSource class, copying from 104

byteSink object 104
ByteSource class

about 97, 102, 103
copying from, to ByteSink class 104

ByteStreams class 97, 104
ByteStreams.limit method 105

C
CacheBuilder class 73, 74, 77-79
CacheBuilderSpec class 73, 79, 80
Cache interface 74, 75
CacheLoader class 73, 81
CacheLoader.from method 81
CacheStats class 73, 81, 82
Callable instance 75, 120
CharMatcher class

about 15

[122]

using 19, 20
Charsets class

about 17
using 17

CharSink class 97
CharSource class 97, 102
CharStreams

about 104
joining 105-107

CharStreams class 97
CharStreams.copy method 107
checkArgument (Boolean expression,

Object message) method 22
checkElementIndex (int index, int size,

Object message) method 22
checkNotNull (T object, Object message)

method 22
checkState (Boolean expression, Object

message) method 22
CityByPopulation comparator 56
Closer class

about 97
joining 107, 108

collections 39
com.google.common.collect package 39
Comparator parameter 41
compareTo method

about 53
implementing 24

ComposedPredicateSuplier class 36
concurrencyLevel() 74
Condition.signal() 60
Condition.signalAll() method 60

D
DeadEvents 94, 95
dependency injection 95, 96

E
emptyToNull method 18
enterWhen method 61
equals method 28
EventBus

about 86
concurrency 87
events, posting 87

events, subscribing to 86
handler methods, defining 87
instance, creating 86

EventBus.register method 86
event publishing

example 89, 90
events

posting 87
subscribing to 86
unsubscribing to 93

ExecutorService instance 63

F
file

appending to 101, 102
as strings 98-100
copying 98
hashing 100
moving 98
renaming 98
writing to 101, 102

FileInputStream object 119
Files.asByteSource method 103
Files class 97
Files.move method 98
Files.readLines method 99
Files.toByteArray method 103
FileWriter instance 13
Finer-grained subscribing 90-93
firstNonNull method 23
FluentIterable class

about 40, 41
FluentIterable.filter method, using 40, 41
FluentIterable.transform method, using 41

FluentIterable.filter method
using 40, 41

FluentIterable.from method 41
FluentIterable.from() method 41
FluentIterable instance 41
FluentIterable.transform method

using 41
forcePut method 50
forMap method 30
Function interface

about 5, 27-29
using, guidelines for 29

[123]

Functions class
about 27
Functions.compose method, using 30, 31
Functions.forMap method, using 30
using 29

Functions.compose method
using 30, 31

Functions.forMap method
using 30

Funnel interface 114
FutureCallback class 59
FutureCallback interface

about 65
using 65, 66

FutureFallback class 59
FutureFallback interface

about 68
applying 70

Future.get method 67, 119
Futures

about 69
Asynchronous Transforms 69
FutureFallbacks, applying 69

Futures.addCallback method 65, 69
Futures class 59

G
getCause() method 83
getEvent method 94
get method 35
goodFastHash method 112
Google Collections Library 5, 39
Google Guava. See also Guava
Google Guava

about 5
using, cases 6

Gradle
Guava, using with 8

greatestOf method 57
Guava

API docs 7
downloading 7
installing, steps for 7
strings with 16
using, with Gradle 7, 8
using, with Maven 7, 8

Guava caches
Cache interface 74
LoadingCache interface 76

H
H2 (embedded database) v1.3.170

URL 9
handler methods

defining 87
hashCode method 23
hash codes

generating 23
hash functions

checksum algorithms 112
creating 111
cryptographic hash function 113
general 112

Hashing class 111
HashMultimap 48

I
immutable collections

about 54
instances, creating 54

InputStreams
size, limiting 105

InputSupplier object 102, 106
invalidateAll(Iterable<?> keys) method 75
invalidateAll() method 75
invalidate(key) method 75
isNullOrEmpty method 18
isPresent method 117
Iterable instances 40
Iterable object 81
Iterables.contains method 41
Iterables.get method 100

J
java.util.concurrent.Executor instance 94
java.util.Date object 28
Joiner class 12, 13
JSR-305 8
JUnit v4.11

URL 9

[124]

L
LineProcessor callback 116
LineProcessor instance 99
LinkedHashMap instance 14
ListenableFuture.addListener method 63, 64
ListenableFuture class

about 59, 63
obtaining 64

ListenableFuture.get method 67
Lists

about 42
Lists.partition method, using 42

Lists.newArrayList() method 41
Lists.partition method

using 42
LoadingCache interface

about 74-76
values in cache, refreshing 76
values, loading 76

lookup.apply() method 31
Lucene v4.2

URL 9

M
MapJoiner class 15
MapJoiner method 13
MapMaker class 73, 74
Maps

about 44
Maps.asMap method, using 45
Maps.uniqueIndex method, using 45
transforming 46

Maps.asMap method
using 45

Maps.EntryTransformer interface 46
MapSplitter class 15, 16
Maps.toMap method 45
Maps.transformEntries method 46
Maps.uniqueIndex method

using 45
Maven

Guava, using with 7, 8
memoizeWithExpiration method 37
Monitor class

about 59-61

access methods 62, 63
best practices 62

Monitor.enterIf method 62
Monitor.enter method 62
Monitor.enterWhen method 63
Monitor.tryEnterIf method 63
Monitor.tryEnter method 63
Multimaps

about 46
ArrayListMultimap 46-48
HashMultimap 48

murmur hash instance 112

N
newLinkedHashMap() method 14
notifyAll() method 60
NullPointerException error 12
nullsFirst method 56
nullToEmpty method 18
null values

checking for 23

O
Object.toString() 12
onSuccess method 65
Optional class 111, 116
Optional.fromNullable method 117
optional instance

about 116
creating, steps for 117, 118

ordering
about 55
instance, creating 55
maximum values, retrieving 57
minimum values, retrieving 57
null, accounting for 56
sorting, reversing 55, 56
sorting, secondary 56

Ordering.from method 55
Ordering.greatestOf method 57
OutputSupplier instance 102, 105

P
padStart method 18
permit 70

[125]

PopulationPredicate 33
Preconditions class

using 20-22
Predicate interface

about 27, 40
example 32
using 32

Predicates.and method
using 33, 34

Predicates class
about 27
Predicates.and method, using 33, 34
Predicates.compose method, using 34, 35
Predicates.not method, using 34
Predicates.or method, using 34
using 33

Predicates.compose method
about 33, 36, 53
using 34, 35

Predicates.not method
using 34

PrimitiveSink 114

R
Range

about 52, 53
with arbitrary comparable objects 53, 54

Range class 39
RateLimiter class 59, 70
recordStats() call 82
ReentrantLock class 60
RemovalCause enum

COLLECTED 83
EXPIRED 83
EXPLICIT 83
REPLACED 83
SIZE 83

RemovalListener class
about 73, 82, 83
adding 80
RemovalNotification class 82
RemovalNotification instance 83

RemovalListeners.asynchronous method 83
RemovalNotification class 82
returning() method 75

S
Sets

about 42, 43
Sets.difference method, using 43
Sets.intersection method, using 43
Sets.symmetricDifference method, using 43
Sets.union method, using 44

Sets.difference method
using 43

Sets.intersection method
using 43

Sets.symmetricDifference method
using 43

Sets.union method
using 44

SettableFuture class 59, 66, 67
SetView 43
SimpleDateFormat class 28
SimpleTradeExecutor class 92
SimpleTradeExecutor constructor 90
skipNulls class 12
SoftReferences 74, 78
softValues() method 74
source code

getting 8, 9
Splitter class 14, 15
Splitter instance 15
Splitter object 16
Spring Java config Version 3.2

URL 9
StandardCharsets class 17
stateFunction.apply() method 31
StringBuilder class 12, 13
StringBuilder instance 13
strings

files, working with as 98
Strings class

using 18
String.split method 14, 15
Supplier.get() method 81
Supplier interface

about 5, 27
example 35, 36
using 35

Suppliers class
about 27

[126]

Suppliers.memoize method, using 37
Suppliers.memoizeWithExpiration method,

using 37
using 36

Suppliers.memoize method
using 37

Suppliers.memoizeWithExpiration method
using 37

T
Table

about 50, 51
operations 51
views 52

threads
synchronizing 60

Throwable object 66
Throwables

about 118
chain, getting 118, 119
Root Cause Throwable, obtaining 119, 120

Throwables class 111
Throwables.getRootCause method 120
toMap method 41
toSet method 41
toSortedList method 41
toSortedSet method 41
toString method 22, 23
TradeAccountEvent instance 90
transform method 41
trimAndCollapseFrom method 19
trimResults method 15
tryAcquire method 70

U
UnsupportedEncodingException error 17
useForNull method 12
useForNull() method 13

W
withKeyValueSeparator method 13

Thank you for buying
Getting Started with Google Guava

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Google App Engine Java and
GWT Application Development
ISBN: 978-1-84969-044-7 Paperback: 480 pages

Build powerful, scalable, and interactive web
applications in the cloud

1. Comprehensive coverage of building scalable,
modular, and maintainable applications with
GWT and GAE using Java

2. Leverage the Google App Engine services
and enhance your app functionality and
performance

3. Integrate your application with Google
Accounts, Facebook, and Twitter

Google App Inventor
ISBN: 978-1-84969-212-0 Paperback: 356 pages

Create powerful Android apps the easy all-visual
way with Google App Inventor

1. All the basics of App Inventor in plain English
with lots of illustrations

2. Learn how apps get created with lots of simple,
fun examples

3. By an author with over 100 books, who keeps
it entertaining, informative, and memorable.
You’ll be inventing apps from the first day.

Please check www.PacktPub.com for information on our titles

Java EE 6 Cookbook for Securing,
Tuning, and Extending Enterprise
Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1. Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework

2. Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services

3. Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks

Java 7 JAX-WS Web Services
ISBN: 978-1-84968-720-1 Paperback: 64 pages

A practical, focused mini book for creating Web
Services in Java 7

1. Develop Java 7 JAX-WS web services using the
NetBeans IDE and Oracle GlassFish server

2. End-to-end application which makes use of the
new clientjar option in JAX-WS wsimport tool

3. Packed with ample screenshots and practical
instructions

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introducing Google Guava
	The case for using Guava
	What is this book about?
	Installing Guava
	Using Guava with Maven or Gradle
	Getting the source code for the book

	Summary

	Chapter 2: Basic Guava Utilities
	Using the Joiner class
	Time for a review
	Using the Splitter class
	Time for a review

	Working with strings in Guava
	Using the Charsets class
	Using the Strings class

	Using the CharMatcher class
	Using the Preconditions class
	Object utilities
	Getting help with the toString method
	Checking for null values
	Generating hash codes
	Implementing CompareTo

	Summary

	Chapter 3: Functional Programming with Guava
	Using the Function interface
	Guidelines for using the Function interface

	Using the Functions class
	Using the Functions.forMap method
	Using the Functions.compose method

	Using the Predicate interface
	An example of the Predicate interface

	Using the Predicates class
	Using the Predicates.and method
	Using the Predicates.or method
	Using the Predicates.not method
	Using the Predicates.compose method

	Using the Supplier interface
	An example of the Supplier interface

	Using the Suppliers class
	Using the Suppliers.memoize method
	Using the Suppliers.memoizeWithExpiration method

	Summary

	Chapter 4: Working with Collections
	The FluentIterable class
	Using the FluentIterable.filter method
	Using the FluentIterable.transform method

	Lists
	Using the Lists.partition method

	Sets
	Using the Sets.difference method
	Using the Sets.symmetricDifference method
	Using the Sets.intersection method
	Using the Sets.union method

	Maps
	Using the Maps.uniqueIndex method
	Using the Maps.asMap method
	Transforming maps

	Multimaps
	ArrayListMultimap
	HashMultimap

	BiMap
	Using the BiMap.forcePut method
	Using the BiMap.inverse method

	Table
	Table operations
	Table views

	Range
	Ranges with arbitrary comparable objects

	Immutable collections
	Creating immutable collection instances

	Ordering
	Creating an Ordering instance
	Reverse sorting
	Accounting for null
	Secondary sorting
	Retrieving minimum and maximum values

	Summary

	Chapter 5: Concurrency
	Synchronizing threads
	Monitor
	Monitor explained
	Monitor best practice
	Different Monitor access methods

	ListenableFuture
	Obtaining a ListenableFuture interface

	FutureCallback
	Using the FutureCallback

	SettableFuture
	AsyncFunction
	FutureFallback
	Futures
	Asynchronous Transforms
	Applying FutureFallbacks

	RateLimiter
	Summary

	Chapter 6: Guava Cache
	MapMaker
	Guava caches
	Cache
	LoadingCache
	Loading values
	Refreshing values in the cache

	CacheBuilder
	CacheBuilderSpec
	CacheLoader
	CacheStats
	RemovalListener
	RemovalNotification
	RemovalListeners

	Summary

	Chapter 7: The EventBus Class
	EventBus
	Creating an EventBus instance
	Subscribing to events
	Posting the events
	Defining handler methods
	Concurrency

	Subscribe – An example
	Event Publishing – An example
	Finer-grained subscribing
	Unsubscribing to events
	AsyncEventBus
	Creating an AsyncEventBus instance

	DeadEvents
	Dependency injection
	Summary

	Chapter 8: Working with Files
	Copying a file
	Moving/renaming a File
	Working with files as strings
	Hashing a file
	Writing to files
	Writing and appending

	InputSupplier and OutputSupplier
	Sources and Sinks

	ByteSource
	ByteSink
	Copying from a ByteSource class to a ByteSink class
	ByteStreams and CharStreams
	Limiting the size of InputStreams
	Joining CharStreams

	Closer
	BaseEncoding
	Summary

	Chapter 9: Odds and Ends
	Creating proper hash functions
	Checksum hash functions
	General hash functions
	Cryptographic hash functions

	BloomFilter
	BloomFilter in a nutshell
	Funnels and PrimitiveSinks
	Creating a BloomFilter instance

	Optional
	Creating an Optional instance

	Throwables
	Getting the chain of Throwables
	Obtaining the Root Cause Throwable

	Summary

	Index

